Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66
Filtrar
1.
Nat Commun ; 15(1): 1982, 2024 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-38438357

RESUMEN

De novo synthesis of the pyrimidine, cytidine triphosphate (CTP), is crucial for DNA/RNA metabolism and depends on the CTP synthetases, CTPS1 and -2. Partial CTPS1 deficiency in humans has previously been shown to lead to immunodeficiency, with impaired expansion of T and B cells. Here, we examine the effects of conditional and inducible inactivation of Ctps1 and/or Ctps2 on mouse embryonic development and immunity. We report that deletion of Ctps1, but not Ctps2, is embryonic-lethal. Tissue and cells with high proliferation and renewal rates, such as intestinal epithelium, erythroid and thymic lineages, activated B and T lymphocytes, and memory T cells strongly rely on CTPS1 for their maintenance and growth. However, both CTPS1 and CTPS2 are required for T cell proliferation following TCR stimulation. Deletion of Ctps1 in T cells or treatment with a CTPS1 inhibitor rescued Foxp3-deficient mice from fatal systemic autoimmunity and reduced the severity of experimental autoimmune encephalomyelitis. These findings support that CTPS1 may represent a target for immune suppression.


Asunto(s)
Autoinmunidad , Desarrollo Embrionario , Femenino , Embarazo , Humanos , Animales , Ratones , Citidina Trifosfato , Autoinmunidad/genética , Linfocitos B , Proliferación Celular
2.
J Allergy Clin Immunol ; 152(4): 949-960, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37390900

RESUMEN

BACKGROUND: The actin cytoskeleton has a crucial role in the maintenance of the immune homeostasis by controlling various cellular processes, including cell migration. Mutations in TTC7A have been described as the cause of a primary immunodeficiency associated to different degrees of gut involvement and alterations in the actin cytoskeleton dynamics. OBJECTIVES: This study investigates the impact of TTC7A deficiency in immune homeostasis. In particular, the role of the TTC7A/phosphatidylinositol 4 kinase type III α pathway in the control of leukocyte migration and actin dynamics. METHODS: Microfabricated devices were leveraged to study cell migration and actin dynamics of murine and patient-derived leukocytes under confinement at the single-cell level. RESULTS: We show that TTC7A-deficient lymphocytes exhibit an altered cell migration and reduced capacity to deform through narrow gaps. Mechanistically, TTC7A-deficient phenotype resulted from impaired phosphoinositide signaling, leading to the downregulation of the phosphoinositide 3-kinase/AKT/RHOA regulatory axis and imbalanced actin cytoskeleton dynamics. TTC7A-associated phenotype resulted in impaired cell motility, accumulation of DNA damage, and increased cell death in dense 3-dimensional gels in the presence of chemokines. CONCLUSIONS: These results highlight a novel role of TTC7A as a critical regulator of lymphocyte migration. Impairment of this cellular function is likely to contribute to the pathophysiology underlying progressive immunodeficiency in patients.


Asunto(s)
Actinas , Fosfatidilinositol 3-Quinasas , Humanos , Animales , Ratones , Muerte Celular , Mutación , Movimiento Celular/genética , Daño del ADN , Proteínas , 1-Fosfatidilinositol 4-Quinasa
3.
Angew Chem Int Ed Engl ; 61(32): e202205231, 2022 08 08.
Artículo en Inglés | MEDLINE | ID: mdl-35612562

RESUMEN

Interferons (IFN) are cytokines which, upon binding to cell surface receptors, trigger a series of downstream biochemical events including Janus Kinase (JAK) activation, phosphorylation of Signal Transducer and Activator of Transcription protein (STAT), translocation of pSTAT to the nucleus and transcriptional activation. Dysregulated IFN signalling has been linked to cancer progression and auto-immune diseases. Here, we report the serendipitous discovery of a small molecule that blocks IFNγ activation of JAK-STAT signalling. Further lead optimisation gave rise to a potent and more selective analogue that exerts its activity by a mechanism consistent with direct IFNγ targeting in vitro, which reduces bleeding in model of haemorrhagic colitis in vivo. This first-in-class small molecule also inhibits type I and III IFN-induced STAT phosphorylation in vitro. Our work provides the basis for the development of pan-IFN inhibitory drugs.


Asunto(s)
Interferones , Quinasas Janus , Interferón gamma , Interferones/metabolismo , Interferones/farmacología , Fosforilación , Transducción de Señal
4.
J Allergy Clin Immunol ; 150(3): 676-689, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35469841

RESUMEN

BACKGROUND: Mast cells (MCs) are key effectors of the allergic response. Following the cross-linking of IgE receptors (FcεRIs), they release crucial inflammatory mediators through degranulation. Although degranulation depends critically on secretory granule (SG) trafficking toward the plasma membrane, the molecular machinery underlying this transport has not been fully characterized. OBJECTIVES: This study analyzed the function of Rab44, a large, atypical Rab guanosine triphosphatase highly expressed in MC, in the MC degranulation process. METHODS: Murine knockout (KO) mouse models (KORab44 and DKOKif5b/Rab44) were used to perform passive cutaneous anaphylaxis experiments and analyze granule translocation in bone marrow-derived MCs during degranulation. RESULTS: This study demonstrate that mice lacking Rab44 (KORab44) in their bone marrow-derived MCs are impaired in their ability to translocate and degranulate SGs at the plasma membrane on FcεRI stimulation. Accordingly, KORab44 mice were less sensitive to IgE-mediated passive cutaneous anaphylaxis in vivo. A lack of Rab44 did not impair early FcεRI-stimulated signaling pathways, microtubule reorganization, lipid mediator release, or cytokine secretion. Mechanistically, Rab44 appears to interact with and function as part of the previously described kinesin-1-dependent transport pathway. CONCLUSIONS: These results highlight a novel role of Rab44 as a regulator of SG transport during degranulation and anaphylaxis acting through the kinesin-1-dependent microtubule transport machinery. Rab44 can thus be considered a potential target for modulating MC degranulation and inhibiting IgE-mediated allergic reactions.


Asunto(s)
Anafilaxia , Mastocitos , Proteínas de Unión al GTP rab/metabolismo , Anafilaxia/metabolismo , Animales , Degranulación de la Célula , Inmunoglobulina E/metabolismo , Cinesinas , Mastocitos/metabolismo , Ratones , Ratones Noqueados , Anafilaxis Cutánea Pasiva , Receptores de IgE/metabolismo , Vesículas Secretoras/metabolismo
5.
J Allergy Clin Immunol ; 149(1): 388-399.e4, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34033843

RESUMEN

BACKGROUND: Rubella virus-induced granulomas have been described in patients with various inborn errors of immunity. Most defects impair T-cell immunity, suggesting a critical role of T cells in rubella elimination. However, the molecular mechanism of virus control remains elusive. OBJECTIVE: This study sought to understand the defective effector mechanism allowing rubella vaccine virus persistence in granulomas. METHODS: Starting from an index case with Griscelli syndrome type 2 and rubella skin granulomas, this study combined an international survey with a literature search to identify patients with cytotoxicity defects and granuloma. The investigators performed rubella virus immunohistochemistry and PCR and T-cell migration assays. RESULTS: This study identified 21 patients with various genetically confirmed cytotoxicity defects, who presented with skin and visceral granulomas. Rubella virus was demonstrated in all 12 accessible biopsies. Granuloma onset was typically before 2 years of age and lesions persisted from months to years. Granulomas were particularly frequent in MUNC13-4 and RAB27A deficiency, where 50% of patients at risk were affected. Although these proteins have also been implicated in lymphocyte migration, 3-dimensional migration assays revealed no evidence of impaired migration of patient T cells. Notably, patients showed no evidence of reduced control of concomitantly given measles, mumps, or varicella live-attenuated vaccine or severe infections with other viruses. CONCLUSIONS: This study identified lymphocyte cytotoxicity as a key effector mechanism for control of rubella vaccine virus, without evidence for its need in control of live measles, mumps, or varicella vaccines. Rubella vaccine-induced granulomas are a novel phenotype with incomplete penetrance of genetic disorders of cytotoxicity.


Asunto(s)
Granuloma/etiología , Vacuna contra la Rubéola/efectos adversos , Linfocitos T/inmunología , Niño , Preescolar , Femenino , Granuloma/genética , Granuloma/inmunología , Granuloma/virología , Humanos , Lactante , Fenotipo , Rubéola (Sarampión Alemán)/genética , Rubéola (Sarampión Alemán)/inmunología , Rubéola (Sarampión Alemán)/virología , Piel/inmunología , Piel/virología
6.
Artículo en Inglés | MEDLINE | ID: mdl-33658321

RESUMEN

OBJECTIVE: To determine whether adult cases of Chronic Lymphocytic Inflammation with Pontine Perivascular Enhancement Responsive to Steroids (CLIPPERS) may be related to familial hemophagocytic lymphohistiocytosis (HLH) causes, we have screened patients with adult-onset CLIPPERS for mutations in primary HLH-associated genes. METHODS: In our cohort of 36 patients fulfilling the criteria for probable or definite CLIPPERS according to the CLIPPERS-2017 criteria, we conducted a first study on 12 patients who consented to genetic testing. In these 12 patients, systemic HLH criteria were searched, and genetic analysis of 8 genes involved in primary HLH was performed. RESULTS: Four definite and 8 probable CLIPPERS were enrolled (n = 12). Mutations involved in HLH were identified in 2 definite and 2 probable CLIPPERS (4/12). Three of them had biallelic PRF1 mutations with reduced perforin expression in natural killer cells. The remaining patient had biallelic UNC13D mutations with cytotoxic lymphocyte impaired degranulation. None of the mutated patients reached the criteria for systemic HLH. During follow-up, 3 of them displayed atypical findings for CLIPPERS, including emergence of systemic non-Hodgkin lymphoma (1/3) and confluent gadolinium-enhancing lesions on brain MRI (3/3). CONCLUSIONS: In our patients presenting with adult-onset CLIPPERS, one-third have HLH gene mutations. This genetic treatable condition should be searched in patients with CLIPPERS, especially in those presenting with atypical findings.


Asunto(s)
Enfermedades del Sistema Nervioso Central/genética , Encefalomielitis/genética , Linfohistiocitosis Hemofagocítica/genética , Adulto , Anciano , Anciano de 80 o más Años , Enfermedades del Sistema Nervioso Central/complicaciones , Estudios de Cohortes , Encefalomielitis/complicaciones , Femenino , Humanos , Inflamación , Masculino , Proteínas de la Membrana/genética , Persona de Mediana Edad , Mutación , Perforina/genética , Síndrome
9.
Nat Commun ; 11(1): 1817, 2020 04 14.
Artículo en Inglés | MEDLINE | ID: mdl-32286311

RESUMEN

Dendritic cells (DCs) constitute a specialized population of immune cells that present exogenous antigen (Ag) on major histocompatibility complex (MHC) class I molecules to initiate CD8 + T cell responses against pathogens and tumours. Although cross-presentation depends critically on the trafficking of Ag-containing intracellular vesicular compartments, the molecular machinery that regulates vesicular transport is incompletely understood. Here, we demonstrate that mice lacking Kif5b (the heavy chain of kinesin-1) in their DCs exhibit a major impairment in cross-presentation and thus a poor in vivo anti-tumour response. We find that kinesin-1 critically regulates antigen cross-presentation in DCs, by controlling Ag degradation, the endosomal pH, and MHC-I recycling. Mechanistically, kinesin-1 appears to regulate early endosome maturation by allowing the scission of endosomal tubulations. Our results highlight kinesin-1's role as a molecular checkpoint that modulates the balance between antigen degradation and cross-presentation.


Asunto(s)
Presentación de Antígeno/inmunología , Células Dendríticas/metabolismo , Endosomas/metabolismo , Cinesinas/metabolismo , Ácidos/metabolismo , Animales , Antígenos/metabolismo , Antígenos CD/metabolismo , Células de la Médula Ósea/citología , Proliferación Celular , Endocitosis , Antígenos de Histocompatibilidad Clase I/metabolismo , Cinesinas/deficiencia , Ratones Noqueados , Ratones Transgénicos , Microtúbulos/metabolismo , Neoplasias/patología , Ovalbúmina/inmunología , Solubilidad
10.
Haematologica ; 105(1): 59-70, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31004027

RESUMEN

The molecular machinery that regulates the balance between self-renewal and differentiation properties of hematopoietic stem cells (HSC) has yet to be characterized in detail. Here we found that the tetratricopeptide repeat domain 7 A (Ttc7a) protein, a putative scaffold protein expressed by HSC, acts as an intrinsic regulator of the proliferative response and the self-renewal potential of murine HSC in vivo Loss of Ttc7a consistently enhanced the competitive repopulating ability of HSC and their intrinsic capacity to replenish the hematopoietic system after serial cell transplantations, relative to wildtype cells. Ttc7a-deficient HSC exhibit a different transcriptomic profile for a set of genes controlling the cellular response to stress, which was associated with increased proliferation in response to chemically induced stress in vitro and myeloablative stress in vivo Our results therefore revealed a previously unrecognized role of Ttc7a as a critical regulator of HSC stemness. This role is related, at least in part, to regulation of the endoplasmic reticulum stress response.


Asunto(s)
Células Madre Hematopoyéticas , Proteínas , Animales , Diferenciación Celular , Proliferación Celular , Ratones
11.
Front Immunol ; 10: 2592, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31787977

RESUMEN

Mutations in the tetratricopeptide repeat domain 7A (TTC7A) gene cause very early onset inflammatory bowel diseases (VOIBD) or multiple intestinal atresia associated with immune deficiency of various severities, ranging from combined immune deficiency to mild lymphopenia. In this manuscript, we report the clinical, biological and molecular features of a patient born from consanguineous parents, presenting with recurrent lymphoproliferative syndrome and pan-hypergammaglobulinemia associated with chronic intestinal pseudo obstruction (CIPO). Genetic screening revealed the novel c.974G>A (p.R325Q) mutation in homozygosity in the TTC7A gene. The patient's phenotype differs significantly from that previously associated with TTC7A deficiency in humans. It becomes closer to the one reported in the ttc7a-deficient mice that invariably develop a proliferative lymphoid and myeloid disorder. Functional studies showed that the extreme variability in the clinical phenotype couldn't be explained by the cellular phenotype. Indeed, the patient's TTC7A mutation, as well as the murine-ttc7 mutant, have the same functional impact on protein expression, DNA instability and chromatin compaction, as the other mutations that lead to classical TTC7A-associated phenotypes. Co-inheritance of genetic variants may also contribute to the unique nature of the patient's phenotype. The present case report shows that the clinical spectrum of TTC7A deficiency is much broader than previously suspected. Our findings should alert the physicians to consider screening of TTC7A mutations in patients with lymphoproliferative syndrome and hypergammaglobulinemia and/or chronic intestinal pseudo-obstruction.


Asunto(s)
Seudoobstrucción Intestinal/etiología , Trastornos Linfoproliferativos/etiología , Deficiencia de Proteína , Proteínas/fisiología , Animales , Células Cultivadas , Enfermedad Crónica , Consanguinidad , Femenino , Humanos , Lactante , Seudoobstrucción Intestinal/genética , Trastornos Linfoproliferativos/genética , Masculino , Ratones , Proteínas/genética
12.
Artículo en Inglés | MEDLINE | ID: mdl-31620093

RESUMEN

The endocannabinoid system (ECS) is composed of a group of Gi-coupled protein receptors and enzymes, producing and degrading the endocannabinoids, 2-arachidonoylglycerol (2-AG) and N-arachidonoyl-ethanolamine (AEA). Endocannabinoid-mediated signaling modulates brain functions, such as pain, mood, memory, and feeding behavior. The activation of the ECS is associated with overeating and obesity; however, the expression of components of this system has been only partially studied in the hypothalamus, a critical region implicated in feeding behavior. Within this brain region, anorexigenic, and orexigenic neurons of the arcuate nucleus (ARC) are in close contact with tanycytes, glial radial-like cells that line the lateral walls and floor of the third ventricle (3V). The specific function of tanycytes and the effects of metabolic signals generated by them on adjacent neurons is starting to be elucidated. We have proposed that the ECS within tanycytes modulates ARC neurons, thus modifying food intake. Here, we evaluated the expression and the loss of function of the 2-AG-producing enzyme, diacylglycerol lipase-alpha (DAGLα). Using Western blot and immunohistochemistry analyses in basal hypothalamus sections of adult rats under several glycemic conditions, we confirm that DAGLα is strongly expressed at the basal hypothalamus in glial and neuronal cells, increasing further in response to greater extracellular glucose levels. Using a DAGLα-inhibiting adenovirus (shRNA), suppression of DAGLα expression in tanycytes altered the usual response to intracerebroventricular glucose in terms of neuropeptides produced by neurons of the ARC. Thus, these results strongly suggest that the tanycytes could generate 2-AG, which modulates the function of anorexigenic and orexigenic neurons.

14.
Am J Phys Med Rehabil ; 98(5): 416-421, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-31003230

RESUMEN

Osteoarthritis is an age-related condition that commonly affects the middle-aged and elderly population including individuals who continue to pursue an active and athletic lifestyle. Running is an easily accessible activity with many health benefits; thus, it is becoming a popular form of exercise, even in older individuals. Studies evaluating the correlation between running and osteoarthritis show conflicting results; however, most studies show an increased risk of osteoarthritis in runners with a combination of modifiable and nonmodifiable risk factors. This study reviews the current literature to provide an overview of conservative (nonpharmacological and pharmacological) management strategies including patient education, therapeutic modalities and exercises, mechanical measures, dietary factors, oral and injectable pharmacotherapies, and orthobiologics. Rehabilitation considerations and return-to-sport guidelines are discussed, emphasizing the notion that a return to running activity requires reduction in mileage and formulation of a structured exercise program that includes strengthening, flexibility, and stability exercises, as well as modifications in the running technique.


Asunto(s)
Tratamiento Conservador/métodos , Terapia por Ejercicio/métodos , Osteoartritis de la Rodilla/rehabilitación , Carrera/estadística & datos numéricos , Anciano , Femenino , Humanos , Masculino , Persona de Mediana Edad
15.
Nat Genet ; 51(1): 196, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30429576

RESUMEN

In the version of this article originally published, the main-text sentence "In three patients of European ancestry, we identified the germline variant encoding p.Ile97Met in TIM-3, which was homozygous in two (P12 and P13) and heterozygous in one (P15) in the germline but with no TIM-3 plasma membrane expression in the tumor" misstated the identifiers of the two homozygous individuals, which should have been P13 and P14. The error has been corrected in the HTML, PDF and print versions of the paper.

16.
Proc Natl Acad Sci U S A ; 116(3): 970-975, 2019 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-30591564

RESUMEN

Receptor-interacting serine/threonine-protein kinase 1 (RIPK1) is a critical regulator of cell death and inflammation, but its relevance for human disease pathogenesis remains elusive. Studies of monogenic disorders might provide critical insights into disease mechanisms and therapeutic targeting of RIPK1 for common diseases. Here, we report on eight patients from six unrelated pedigrees with biallelic loss-of-function mutations in RIPK1 presenting with primary immunodeficiency and/or intestinal inflammation. Mutations in RIPK1 were associated with reduced NF-κB activity, defective differentiation of T and B cells, increased inflammasome activity, and impaired response to TNFR1-mediated cell death in intestinal epithelial cells. The characterization of RIPK1-deficient patients highlights the essential role of RIPK1 in controlling human immune and intestinal homeostasis, and might have critical implications for therapies targeting RIPK1.


Asunto(s)
Diferenciación Celular , Inmunidad Mucosa/genética , Enfermedades Inflamatorias del Intestino , Mucosa Intestinal , Proteína Serina-Treonina Quinasas de Interacción con Receptores , Inmunodeficiencia Combinada Grave , Linfocitos B/inmunología , Linfocitos B/patología , Diferenciación Celular/genética , Diferenciación Celular/inmunología , Células Epiteliales/inmunología , Células Epiteliales/patología , Femenino , Células HCT116 , Células HEK293 , Humanos , Enfermedades Inflamatorias del Intestino/genética , Enfermedades Inflamatorias del Intestino/inmunología , Enfermedades Inflamatorias del Intestino/patología , Mucosa Intestinal/inmunología , Mucosa Intestinal/patología , Masculino , Mutación , FN-kappa B/genética , FN-kappa B/inmunología , Proteína Serina-Treonina Quinasas de Interacción con Receptores/deficiencia , Proteína Serina-Treonina Quinasas de Interacción con Receptores/inmunología , Inmunodeficiencia Combinada Grave/genética , Inmunodeficiencia Combinada Grave/inmunología , Inmunodeficiencia Combinada Grave/patología , Linfocitos T/inmunología , Linfocitos T/patología
17.
Cell Discov ; 4: 61, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30455981

RESUMEN

A loss-of-function mutation in tetratricopeptide repeat domain 7A (TTC7A) is a recently identified cause of human intestinal and immune disorders. However, clues to related underlying molecular dysfunctions remain elusive. It is now shown based on the study of TTC7A-deficient and wild-type cells that TTC7A is an essential nuclear protein. It binds to chromatin, preferentially at actively transcribed regions. Its depletion results in broad range of epigenomic changes at proximal and distal transcriptional regulatory elements and in altered control of the transcriptional program. Loss of WT_TTC7A induces general decrease in chromatin compaction, unbalanced cellular distribution of histones, higher nucleosome accessibility to nuclease digestion along with genome instability, and reduced cell viability. Our observations characterize for the first time unreported functions for TTC7A in the nucleus that exert a critical role in chromatin organization and gene regulation to safeguard healthy immune and intestinal status.

18.
Cell Mol Gastroenterol Hepatol ; 6(4): 477-493.e1, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30364784

RESUMEN

Background & Aims: Microvillus inclusion disease (MVID) is a congenital intestinal malabsorption disorder caused by defective apical vesicular transport. Existing cellular models do not fully recapitulate this heterogeneous pathology. The aim of this study was to characterize 3-dimensional intestinal organoids that continuously generate polarized absorptive cells as an accessible and relevant model to investigate MVID. Methods: Intestinal organoids from Munc18-2/Stxbp2-null mice that are deficient for apical vesicular transport were subjected to enterocyte-specific differentiation protocols. Lentiviral rescue experiments were performed using human MUNC18-2 variants. Apical trafficking and microvillus formation were characterized by confocal and transmission electron microscopy. Spinning disc time-lapse microscopy was used to document the lifecycle of microvillus inclusions. Results: Loss of Munc18-2/Stxbp2 recapitulated the pathologic features observed in patients with MUNC18-2 deficiency. The defects were fully restored by transgenic wild-type human MUNC18-2 protein, but not the patient variant (P477L). Importantly, we discovered that the MVID phenotype was correlated with the degree of enterocyte differentiation: secretory vesicles accumulated already in crypt progenitors, while differentiated enterocytes showed an apical tubulovesicular network and enlarged lysosomes. Upon prolonged enterocyte differentiation, cytoplasmic F-actin-positive foci were observed that further progressed into classic microvillus inclusions. Time-lapse microscopy showed their dynamic formation by intracellular maturation or invagination of the apical or basolateral plasma membrane. Conclusions: We show that prolonged enterocyte-specific differentiation is required to recapitulate the entire spectrum of MVID. Primary organoids can provide a powerful model for this heterogeneous pathology. Formation of microvillus inclusions from multiple membrane sources showed an unexpected dynamic of the enterocyte brush border.


Asunto(s)
Diferenciación Celular , Enterocitos/patología , Intestinos/patología , Síndromes de Malabsorción/metabolismo , Microvellosidades/patología , Mucolipidosis/metabolismo , Proteínas Munc18/deficiencia , Proteínas Munc18/metabolismo , Organoides/metabolismo , Actinas/metabolismo , Animales , Núcleo Celular/metabolismo , Enterocitos/metabolismo , Humanos , Lisosomas/metabolismo , Síndromes de Malabsorción/patología , Ratones Noqueados , Microvellosidades/metabolismo , Microvellosidades/ultraestructura , Mucolipidosis/patología , Organoides/patología , Organoides/ultraestructura
19.
Nat Genet ; 50(12): 1650-1657, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30374066

RESUMEN

Subcutaneous panniculitis-like T cell lymphoma (SPTCL), a non-Hodgkin lymphoma, can be associated with hemophagocytic lymphohistiocytosis (HLH), a life-threatening immune activation that adversely affects survival1,2. T cell immunoglobulin mucin 3 (TIM-3) is a modulator of immune responses expressed on subgroups of T and innate immune cells. We identify in ~60% of SPTCL cases germline, loss-of-function, missense variants altering highly conserved residues of TIM-3, c.245A>G (p.Tyr82Cys) and c.291A>G (p.Ile97Met), each with specific geographic distribution. The variant encoding p.Tyr82Cys TIM-3 occurs on a potential founder chromosome in patients with East Asian and Polynesian ancestry, while p.Ile97Met TIM-3 occurs in patients with European ancestry. Both variants induce protein misfolding and abrogate TIM-3's plasma membrane expression, leading to persistent immune activation and increased production of inflammatory cytokines, including tumor necrosis factor-α and interleukin-1ß, promoting HLH and SPTCL. Our findings highlight HLH-SPTCL as a new genetic entity and identify mutations causing TIM-3 alterations as a causative genetic defect in SPTCL. While HLH-SPTCL patients with mutant TIM-3 benefit from immunomodulation, therapeutic repression of the TIM-3 checkpoint may have adverse consequences.


Asunto(s)
Mutación de Línea Germinal , Receptor 2 Celular del Virus de la Hepatitis A/genética , Linfohistiocitosis Hemofagocítica/genética , Linfoma de Células T/genética , Paniculitis/genética , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Niño , Diagnóstico Diferencial , Femenino , Predisposición Genética a la Enfermedad , Humanos , Lactante , Linfohistiocitosis Hemofagocítica/clasificación , Linfohistiocitosis Hemofagocítica/diagnóstico , Linfoma de Células T/clasificación , Linfoma de Células T/diagnóstico , Masculino , Persona de Mediana Edad , Paniculitis/clasificación , Paniculitis/diagnóstico , Linaje , Secuenciación del Exoma , Adulto Joven
20.
Front Aging Neurosci ; 10: 226, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30123122

RESUMEN

Background: The beta-amyloid peptide (Aß) involved in Alzheimer's disease (AD) has been described to associate/aggregate on the cell surface disrupting the membrane through pore formation and breakage. However, molecular determinants involved for this interaction (e.g., some physicochemical properties of the cell membrane) are largely unknown. Since cholesterol is an important molecule for membrane structure and fluidity, we examined the effect of varying cholesterol content with the association and membrane perforation by Aß in cultured hippocampal neurons. Methods: To decrease or increase the levels of cholesterol in the membrane we used methyl-ß-cyclodextrin (MßCD) and MßCD/cholesterol, respectively. We analyzed if membrane fluidity was affected using generalized polarization (GP) imaging and the fluorescent dye di-4-ANEPPDHQ. Additionally membrane association and perforation was assessed using immunocytochemistry and electrophysiological techniques, respectively. Results: The results showed that cholesterol removal decreased the macroscopic association of Aß to neuronal membranes (fluorescent-puncta/20 µm: control = 18 ± 2 vs. MßCD = 10 ± 1, p < 0.05) and induced a facilitation of the membrane perforation by Aß with respect to control cells (half-time for maximal charge transferred: control = 7.2 vs. MßCD = 4.4). Under this condition, we found an increase in membrane fluidity (46 ± 3.3% decrease in GP value, p < 0.001). On the contrary, increasing cholesterol levels incremented membrane rigidity (38 ± 2.7% increase in GP value, p < 0.001) and enhanced the association and clustering of Aß (fluorescent-puncta/20 µm: control = 18 ± 2 vs. MßCD = 10 ± 1, p < 0.01), but inhibited membrane disruption. Conclusion: Our results strongly support the significance of plasma membrane organization in the toxic effects of Aß in hippocampal neurons, since fluidity can regulate distribution and insertion of the Aß peptide in the neuronal membrane.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA