Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Am Chem Soc ; 2023 Nov 06.
Artículo en Inglés | MEDLINE | ID: mdl-37933117

RESUMEN

A key conundrum of biomolecular electronics is efficient electron transport (ETp) through solid-state junctions up to 10 nm, often without temperature activation. Such behavior challenges known charge transport mechanisms, especially via nonconjugated molecules such as proteins. Single-step, coherent quantum-mechanical tunneling proposed for ETp across small protein, 2-3 nm wide junctions, but it is problematic for larger proteins. Here we exploit the ability of bacteriorhodopsin (bR), a well-studied, 4-5 nm long membrane protein, to assemble into well-defined single and multiple bilayers, from ∼9 to 60 nm thick, to investigate ETp limits as a function of junction width. To ensure sufficient signal/noise, we use large area (∼10-3 cm2) Au-protein-Si junctions. Photoemission spectra indicate a wide energy separation between electrode Fermi and the nearest protein-energy levels, as expected for a polymer of mostly saturated components. Junction currents decreased exponentially with increasing junction width, with uniquely low length-decay constants (0.05-0.5 nm-1). Remarkably, even for the widest junctions, currents are nearly temperature-independent, completely so below 160 K. While, among other things, the lack of temperature-dependence excludes, hopping as a plausible mechanism, coherent quantum-mechanical tunneling over 60 nm is physically implausible. The results may be understood if ETp is limited by injection into one of the contacts, followed by more efficient charge propagation across the protein. Still, the electrostatics of the protein films further limit the number of charge carriers injected into the protein film. How electron transport across dozens of nanometers of protein layers is more efficient than injection defines a riddle, requiring further study.

2.
R Soc Open Sci ; 10(9): 231206, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37700905

RESUMEN

[This corrects the article DOI: 10.1098/rsos.211022.][This corrects the article DOI: 10.1098/rsos.211022.].

3.
J Vis Exp ; (198)2023 08 04.
Artículo en Inglés | MEDLINE | ID: mdl-37590554

RESUMEN

Nanoimpact electrochemistry enables the time-resolved in situ characterization (e.g., size, catalytic activity) of single nanomaterial units, providing a means of elucidating heterogeneities that would be masked in ensemble studies. To implement this technique with redox inactive particles, a solution-phase redox reaction is used to produce a steady-state background current on a disk ultramicroelectrode. When a particle adsorbs onto the electrode, it produces a stepwise reduction in the exposed electrode area, which produces, in turn, a stepwise decrease in the current commensurate with the size of the adsorbing species. Historically, however, nanoimpact electrochemistry has suffered from "edge effects," in which the radial diffusion layer formed at the circumference of the ultramicroelectrodes renders the step size dependent not only on the size of the particle but also on where it lands on the electrode. The introduction of electrocatalytic current generation, however, mitigates the heterogeneity caused by edge effects, thus improving the measurement precision. In this approach, termed "electrocatalytic interruption," a substrate that regenerates the redox probe at the diffusion layer is introduced. This shifts the rate-limiting step of the current generation from diffusion to the homogeneous reaction rate constant, thus reducing flux heterogeneity and increasing the precision of particle sizing by an order of magnitude. The protocol described here explains the set-up and data collection employed in nanoimpact experiments implementing this effect for improved precision in the sizing of redox in-active materials.


Asunto(s)
Nanoestructuras , Recolección de Datos , Difusión , Electroquímica , Electrodos
4.
ACS Sens ; 8(8): 3051-3059, 2023 08 25.
Artículo en Inglés | MEDLINE | ID: mdl-37584531

RESUMEN

Electrochemical aptamer-based (EAB) sensors are capable of measuring the concentrations of specific molecules in vivo, in real time, and with a few-second time resolution. For their signal transduction mechanism, these sensors utilize a binding-induced conformational change in their target-recognizing, redox-reporter-modified aptamer to alter the rate of electron transfer between the reporter and the supporting electrode. While a variety of voltammetric techniques have been used to monitor this change in kinetics, they suffer from various drawbacks, including time resolution limited to several seconds and sensor-to-sensor variation that requires calibration to remove. Here, however, we show that the use of fast Fourier transform electrochemical impedance spectroscopy (FFT-EIS) to interrogate EAB sensors leads to improved (here better than 2 s) time resolution and calibration-free operation, even when such sensors are deployed in vivo. To showcase these benefits, we demonstrate the approach's ability to perform real-time molecular measurements in the veins of living rats.


Asunto(s)
Aptámeros de Nucleótidos , Técnicas Biosensibles , Ratas , Animales , Aptámeros de Nucleótidos/química , Espectroscopía Dieléctrica , Técnicas Electroquímicas/métodos , Técnicas Biosensibles/métodos , Electrodos
5.
J R Soc Interface ; 20(204): 20230183, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37403486

RESUMEN

Neuronally triggered phosphorylation drives the calibrated and cyclable assembly of the reflectin signal transducing proteins, resulting in their fine tuning of colours reflected from specialized skin cells in squid for camouflage and communication. In close parallel to this physiological behaviour, we demonstrate for the first time that electrochemical reduction of reflectin A1, used as a surrogate for charge neutralization by phosphorylation, triggers voltage-calibrated, proportional and cyclable control of the size of the protein's assembly. Electrochemically triggered condensation, folding and assembly were simultaneously analysed using in situ dynamic light scattering, circular dichroism and UV absorbance spectroscopies. The correlation of assembly size with applied potential is probably linked to reflectin's mechanism of dynamic arrest, which is controlled by the extent of neuronally triggered charge neutralization and the corresponding fine tuning of colour in the biological system. This work opens a new perspective on electrically controlling and simultaneously observing reflectin assembly and, more broadly, provides access to manipulate, observe and electrokinetically control the formation of intermediates and conformational dynamics of macromolecular systems.


Asunto(s)
Decapodiformes , Proteínas , Animales , Proteínas/química , Decapodiformes/química , Decapodiformes/metabolismo , Piel/metabolismo , Fosforilación , Dicroismo Circular
6.
J Biol Chem ; 299(3): 103011, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36781124

RESUMEN

Tau protein's reversible assembly and binding of microtubules in brain neurons are regulated by charge-neutralizing phosphorylation, while its hyperphosphorylation drives the irreversible formation of cytotoxic filaments associated with neurodegenerative diseases. However, the structural changes that facilitate these diverse functions are unclear. Here, we analyzed K18, a core peptide of tau, using newly developed spectroelectrochemical instrumentation that enables electroreduction as a surrogate for charge neutralization by phosphorylation, with simultaneous, real-time quantitative analyses of the resulting conformational transitions and assembly. We observed a tipping point between behaviors that paralleled the transition between tau's physiologically required, reversible folding and assembly and the irreversibility of assemblies. The resulting rapidly electroassembled structures represent the first fibrillar tangles of K18 that have been formed in vitro at room temperature without using heparin or other charge-complementary anionic partners. These methods make it possible to (i) trigger and analyze in real time the early stages of conformational transitions and assembly without the need for preformed seeds, heterogenous coacervation, or crowding; (ii) kinetically resolve and potentially isolate never-before-seen early intermediates in these processes; and (iii) develop assays for additional factors and mechanisms that can direct the trajectory of assembly from physiologically benign and reversible to potentially pathological and irreversible structures. We anticipate wide applicability of these methods to other amyloidogenic systems and beyond.


Asunto(s)
Enfermedad de Alzheimer , Proteínas tau , Humanos , Enfermedad de Alzheimer/metabolismo , Microtúbulos/metabolismo , Péptidos/metabolismo , Fosforilación , Proteínas tau/metabolismo , Técnicas Electroquímicas
7.
Int J Mol Sci ; 23(23)2022 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-36499326

RESUMEN

In recent years, extensive efforts have been made to develop clean energy technologies to replace fossil fuels to assist the struggle against climate change. One approach is to exploit the ability of bacteria and photosynthetic organisms to conduct external electron transport for electricity production in bio-electrochemical cells. In this work, we first show that the sea anemones Nematostella vectensis and eggs of Artemia (brine shrimp) secrete redox-active molecules that can reduce the electron acceptor Cytochrome C. We applied 2D fluorescence spectroscopy and identified NADH or NADPH as secreted species. Finally, we broaden the scope of living organisms that can be integrated with a bio-electrochemical cell to the sea anemones group, showing for the first time that Nematostella and eggs of Artemia can produce electrical current when integrated into a bio-electrochemical cell.


Asunto(s)
Anémonas de Mar , Animales
8.
ECS Sens Plus ; 1(1)2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36452064

RESUMEN

Electrochemical aptamer-based (EAB) sensors encompass the only biosensor approach yet reported that is simultaneously: (1) independent of the chemical or enzymatic reactivity of its target, rendering it general; (2) continuous and real-time; and (3) selective enough to deploy in situ in the living body. Consistent with this, in vivo EAB sensors supporting the seconds-resolved, real-time measurement of multiple drugs and metabolites have been reported, suggesting the approach may prove of value in biomedical research and the diagnosis, treatment, and monitoring of disease. However, to apply these devices in long-duration animal models, much less in human patients, requires that they be free of any significant pathogen load. Thus motivated, here we have characterized the compatibility of EAB sensors with standard sterilization and high-level disinfection techniques. Doing so, we find that, while many lead to significant sensor degradation, treatment with CIDEX OPA (0.55% ortho-phthalaldehyde) leads to effective disinfection without causing any detectable loss in sensor performance.

9.
Anal Chem ; 94(12): 4948-4953, 2022 03 29.
Artículo en Inglés | MEDLINE | ID: mdl-35290024

RESUMEN

Platinum-catalyzed electrochemical reduction of dissociable protons at low potentials was used to investigate proton dissociation equilibria of freely diffusing and peptide-incorporated charged amino acids. We first demonstrate with five charged essential amino acids and their analogs that the electrochemically induced deprotonation of each amino acid occurs at distinct formal reduction potential. Moreover, the observed direct reduction for all the charged species, excluding arginine, occurs at low potentials suitable for investigation under aqueous conditions (-0.4 to -0.9 V vs Ag/AgCl). The direct proton reduction was resolved via deconvolution of the observed differential pulse voltammogram (DPV) from background hydronium reduction and water electrolysis. A linear correlation was found between the formal reduction potentials and the pKa values of the dissociable protons hosted by various molecular moieties in the amino acids and their analogs and further verified with tripeptides. DPV of poly(l-lysine) decamer (Lys10) distinctively resolved the pKa values of the amino groups in the side chains and N-terminus, at a resolution not possible by conventional acid-base titration. This work demonstrates selective electrochemical titration of dissociable protons in charged amino acids in the free state and as residues in biomolecules, as well as the utility of DPV to indirectly interrogate local electrostatic environments that are essential to the stability and function of biomolecules.


Asunto(s)
Aminoácidos , Protones , Aminoácidos/química , Arginina , Lisina/química , Péptidos/química , Agua/química
10.
Adv Mater ; 34(22): e2104206, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-34626021

RESUMEN

Conjugated polyelectrolytes (CPEs) are characterized by an electronically delocalized backbone bearing ionic functionalities. These features lead to properties relevant for use in energy-storing pseudocapacitor devices, including ionic conductivity, water processability, gel-formation, and formation of polaronic species stabilized by electrostatic interactions. In this Perspective, the basis for evaluating the figures of merit for pseudocapacitors is provided, together with the techniques used for their evaluation. The general utility and challenges encountered with neutral conjugated polymers are then discussed. Finally, recent advances on the use of CPEs in pseudocapacitor devices are reviewed. The article is concluded by discussing how their miscibility in aqueous media permits the incorporation of CPEs in living materials that are capable of switching function from extraction of energy from bacterial metabolic pathways to pseudocapacitor energy storage.


Asunto(s)
Polímeros , Agua , Bacterias , Conductividad Eléctrica , Polielectrolitos
11.
Bioelectrochemistry ; 144: 108007, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-34871847

RESUMEN

Reversible electrochemical triggering of the random coil to α-helix conformational transition of polylysine (Lys10, Lys20, Lys50) was accomplished at a Pt electrode at potentials < |1| V vs. Ag/AgCl. Direct electroreduction of the N-terminus vs ε-amino groups in Lys sidechains, as well as hydronium reduction and electrolysis, could be easily distinguished and deconvolved using differential pulse voltammetry. Electrochemistry was coupled with in situ UV absorbance and circular dichroism spectroscopies to dynamically follow the evolution of α-helix formation at different potentials. Isotope experiments in H2O vs. D2O unequivocally confirm that direct electroreduction of ε-NH3+/ND3+ groups in Lys sidechains, rather than electrochemically generated pH gradient-induced deprotonation, leads to subsequent α-helix formation. The site-selective electrochemistry and optical methodologies presented herein can be generalized and extended to interrogate other protonation-sensitive biomolecular systems, and potentially provide access to early intermediates and control over the dynamic structural evolution of peptides and proteins.


Asunto(s)
Polilisina
12.
R Soc Open Sci ; 8(11): 211022, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34804570

RESUMEN

The dynamics of hydrogen peroxide reactions with metal carbonyls have received little attention. Given reports that therapeutic levels of carbon monoxide are released in hypoxic tumour cells upon manganese carbonyls reactions with endogenous H2O2, it is critical to assess the underlying CO release mechanism(s). In this context, a quantitative mechanistic investigation of the H2O2 oxidation of the water-soluble model complex fac-[Mn(CO)3(Br)(bpCO2)]2-, (A, bpCO2 2- = 2,2'-bipyridine-4,4'-dicarboxylate dianion) was undertaken under physiologically relevant conditions. Characterizing such pathways is essential to evaluating the viability of redox-mediated CO release as an anti-cancer strategy. The present experimental studies demonstrate that approximately 2.5 equivalents of CO are released upon H2O2 oxidation of A via pH-dependent kinetics that are first-order both in [A] and in [H2O2]. Density functional calculations were used to evaluate the key intermediates in the proposed reaction mechanisms. These pathways are discussed in terms of their relevance to physiological CO delivery by carbon monoxide releasing moieties.

13.
J Am Chem Soc ; 143(45): 18888-18898, 2021 11 17.
Artículo en Inglés | MEDLINE | ID: mdl-34735140

RESUMEN

Blocking electrochemistry, a subfield of nanochemistry, enables nondestructive, in situ measurement of the concentration, size, and size heterogeneity of highly dilute, nanometer-scale materials. This approach, in which the adsorptive impact of individual particles on a microelectrode prevents charge exchange with a freely diffusing electroactive redox mediator, has expanded the scope of electrochemistry to the study of redox-inert materials. A limitation, however, remains: inhomogeneous current fluxes associated with enhanced mass transfer occurring at the edges of planar microelectrodes confound the relationship between the size of the impacting particle and the signal it generates. These "edge effects" lead to the overestimation of size heterogeneity and, thus, poor sample characterization. In response, we demonstrate here the ability of catalytic current amplification (EC') to reduce this problem, an effect we term "electrocatalytic interruption". Specifically, we show that the increase in mass transport produced by a coupled chemical reaction significantly mitigates edge effects, returning estimated particle size distributions much closer to those observed using ex situ electron microscopy. In parallel, electrocatalytic interruption enhances the signal observed from individual particles, enabling the detection of particles significantly smaller than is possible via conventional blocking electrochemistry. Finite element simulations indicate that the rapid chemical kinetics created by this approach contributes to the amplification of the electronic signal to restore analytical precision and reliably detect and characterize the heterogeneity of nanoscale electro-inactive materials.

14.
J Phys Chem Lett ; 12(40): 9748-9753, 2021 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-34591489

RESUMEN

We present an electrochemical impedance spectroscopy (EIS) technique that can detect and characterize single particles as they collide with an electrode in solution. This extension of single-particle electrochemistry offers more information than typical amperometric single-entity measurements, as EIS can isolate concurrent capacitive, resistive, and diffusional processes on the basis of their time scales. Using a simple model system, we show that time-resolved EIS can detect individual polystyrene particles that stochastically collide with an electrode. Discrete changes are observed in various equivalent circuit elements, corresponding to the physical properties of the single particles. The advantages of EIS are leveraged to separate kinetic and diffusional processes, enabling enhanced precision in measurements of the size of the particles. In a broader context, the frequency analysis and single-object resolution afforded by this technique can provide valuable insights into single pseudocapacitive microparticles, electrocatalysts, and other energy-relevant materials.

15.
J Am Chem Soc ; 143(31): 12278-12285, 2021 08 11.
Artículo en Inglés | MEDLINE | ID: mdl-34314165

RESUMEN

The necessity of well-tuned reactivity for successful controlled polymer synthesis often comes with the price of limited monomer substrate scope. We demonstrate here the on-demand interconversion between living radical and cationic polymerization using two orthogonal stimuli and a dual responsive single catalyst. The dual photo- and electrochemical reactivity of 10-phenylphenothiazine catalyst provides control of the polymer's molar mass and composition by orthogonally activating the common dormant species toward two distinct chemical routes. This enables the synthesis of copolymer chains that consist of radically and cationically polymerized segments where the length of each block is controlled by the duration of the stimulus exposure. By alternating the application of photochemical and electrochemical stimuli, the on-demand incorporation of acrylates and vinyl ethers is achieved without compromising the end-group fidelity or dispersity of the formed polymer. The results provide a proof-of-concept for the ability to substantially extend substrate scope for block copolymer synthesis under mild, metal-free conditions through the use of a single, dual reactive catalyst.

16.
J R Soc Interface ; 17(173): 20200774, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33259748

RESUMEN

Phosphorylation is among the most widely distributed mechanisms regulating the tunable structure and function of proteins in response to neuronal, hormonal and environmental signals. We demonstrate here that the low-voltage electrochemical reduction of histidine residues in reflectin A1, a protein that mediates the neuronal fine-tuning of colour reflected from skin cells for camouflage and communication in squids, acts as an in vitro surrogate for phosphorylation in vivo, driving the assembly previously shown to regulate its function. Using micro-drop voltammetry and a newly designed electrochemical cell integrated with an instrument measuring dynamic light scattering, we demonstrate selective reduction of the imidazolium side chains of histidine in monomers, oligopeptides and this complex protein in solution. The formal reduction potential of imidazolium proves readily distinguishable from those of hydronium and primary amines, allowing unequivocal confirmation of the direct and energetically selective deprotonation of histidine in the protein. The resulting 'electro-assembly' provides a new approach to probe, understand, and control the mechanisms that dynamically tune protein structure and function in normal physiology and disease. With its abilities to serve as a surrogate for phosphorylation and other mechanisms of charge neutralization, and to potentially isolate early intermediates in protein assembly, this method may be useful for analysing never-before-seen early intermediates in the phosphorylation-driven assembly of other proteins in normal physiology and disease.


Asunto(s)
Decapodiformes , Proteínas , Animales , Electroquímica , Fosforilación , Proteínas/metabolismo , Piel/metabolismo
17.
Angew Chem Int Ed Engl ; 59(43): 19184-19192, 2020 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-32745310

RESUMEN

While the electrochemical nanoimpact technique has recently emerged as a method of studying single entities, it is limited by requirement of a catalytically active particle impacting an inert electrode. We show that an active particle-active electrode can provide mechanistic insight into electrochemical reactions. When an individual Pt electrocatalyst adsorbs to the surface of a partially active electrode, further reduction of electrode-produced species can proceed on the nanocatalyst. Current transients obtained during hydrogen evolution allow simultaneous measurement of the Pt catalyst over different length scales, size dependency suggests H atom intercalation as a catalytic deactivation mechanism. Although results show that outer-sphere redox probes are unproductive for particle characterization, the breadth of inner-sphere electrochemical reactions makes this a promising method for understanding the properties of catalytic nanomaterials, one at a time.

18.
J Phys Chem Lett ; 9(11): 2814-2817, 2018 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-29750524

RESUMEN

Dynamic fluctuations of the catalytic ability of single catalase enzymes toward hydrogen peroxide decomposition are observed via the nanoimpact technique. The electrochemical signals of single enzymes show that the catalytic ability of single enzymes can temporarily be much higher than expected from the classical, time-averaged Michaelis-Menten description. By combination of experimental data with a new theoretical model, we interpret the unusual enhancement of the single catalase signal and find that single catalases show large fluctuations of the catalytic ability.

19.
Chem Sci ; 8(9): 6423-6432, 2017 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-29163928

RESUMEN

To evaluate the possible detection of single enzyme activity via electrochemical methods, a combined finite difference and random walk simulation is used to model individual enzyme-electrode collisions where such events are monitored amperometrically via the measurement of products formed by the enzyme in solution. It is found that the observed signal is highly sensitive to both the enzyme turnover number, the size of the electrode and the bandwidth of the electronics. Taking single catalase impacts as an example, simulation results are compared with experimental data. Our work shows the requirement for the detection of electrochemically active product formed by individual enzymes and gives guidance for the design of experiments.

20.
Phys Chem Chem Phys ; 19(24): 15662-15666, 2017 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-28607991

RESUMEN

We demonstrate the feasibility of electrochemically detecting individual water droplets dispersed in an oil phase (inverse emulsions) via the use of a redox probe confined in the droplet phase. The water droplets were tagged with potassium ferrocyanide, and were injected into an electrolyte cyclohexene/dichloromethane oil solution. Via simple cyclic voltammetry scans it is shown that single water droplets from a water-in-oil emulsion can be detected provided that rapid anion transfer from the oil to the water phase maintains electro-neutrality in the droplet.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...