Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Phys Chem Chem Phys ; 25(24): 16492-16498, 2023 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-37306624

RESUMEN

Both gallium nitride (GaN) and hybrid organic-inorganic perovskites such as methylammonium lead iodide (MAPbI3) have significantly influenced modern optoelectronics. Both marked a new beginning in the development of important branches in the semiconductor industry. For GaN, it is solid-state lighting and high-power electronics, and for MAPbI3, it is photovoltaics. Today, both are widely incorporated as building blocks in solar cells, LEDs and photodetectors. Regarding multilayers, and thus multi-interfacial construction of such devices, an understanding of the physical phenomena governing electronic transport at the interfaces is relevant. In this study, we present the spectroscopic investigation of carrier transfer across the MAPbI3/GaN interface by contactless electroreflectance (CER) for n-type and p-type GaN. The effect of MAPbI3 on the Fermi level position at the GaN surface was determined which allowed us to draw conclusions about the electronic phenomena at the interface. Our results show that MAPbI3 shifts the surface Fermi level deeper inside the GaN bandgap. Regarding different surface Fermi level positions for n-type and p-type GaN, we explain this as carrier transfer from GaN to MAPbI3 for n-type GaN and in the opposite direction for p-type GaN. We extend our outcomes with a demonstration of a broadband and self-powered MAPbI3/GaN photodetector.

2.
ACS Omega ; 7(28): 24777-24784, 2022 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-35874245

RESUMEN

Due to the antisurfactant properties of arsenic atoms, the self-induced dodecagonal GaN microrods can be grown by molecular beam epitaxy (MBE) in Ga-rich conditions. Since temperature is a key parameter in MBE growth, the role of temperature in the growth of GaN microrods is investigated. The optimal growth temperature window for the formation of GaN microrods is observed to be between 760 and 800 °C. Lowering the temperature to 720 °C did not change the growth mechanism, but the population of irregular and amorphous microrods increased. On the other hand, increasing the growth temperature up to 880 °C interrupts the growth of GaN microrods, due to the re-evaporation of the gallium from the surface. The incorporation of As in GaN microrods is negligible, which is confirmed by X-ray diffraction and transmission electron microscopy. Moreover, the photoluminescence and cathodoluminescence characteristics typical for GaN are observed for individual GaN microrods, which additionally confirms that arsenic is not incorporated inside microrods. When the growth temperature is increased, the emission related to the band gap decreases in favor of the defect-related emission. This is typical for bulk GaN and attributed to an increase in the point defect concentration for GaN microrods grown at lower temperatures.

3.
ACS Appl Mater Interfaces ; 14(4): 6131-6137, 2022 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-35043636

RESUMEN

Hexagonal boron nitride (h-BN), together with other members of the van der Waals crystal family, has been studied for over a decade, both in terms of fundamental and applied research. Up to now, the spectrum of h-BN-based devices has broadened significantly, and systems containing the h-BN/III-V junctions have gained substantial interest as building blocks in, inter alia, light emitters, photodetectors, or transistor structures. Therefore, the understanding of electronic phenomena at the h-BN/III-V interfaces becomes a question of high importance regarding device engineering. In this study, we present the investigation of electronic phenomena at the h-BN/GaN interface by means of contactless electroreflectance (CER) spectroscopy. This nondestructive method enables precise determination of the Fermi level position at the h-BN/GaN interface and the investigation of carrier transport across the interface. CER results showed that h-BN induces an enlargement of the surface barrier height at the GaN surface. Such an effect translates to Fermi level pinning deeper inside the GaN band gap. As an explanation, we propose a mechanism based on electron transfer from GaN surface states to the native acceptor states in h-BN. We reinforced our findings by thorough structural characterization and demonstration of the h-BN/GaN Schottky diode. The surface barriers obtained from CER (0.60 ± 0.09 eV for GaN and 0.91 ± 0.12 eV for h-BN/GaN) and electrical measurements are consistent within the experimental accuracy, proving that CER is an excellent tool for interfacial studies of 2D/III-V hybrids.

4.
ACS Omega ; 6(30): 19893-19900, 2021 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-34368576

RESUMEN

We present studies focused on the evolution of the electronic band structure of the Mo1-x W x Se2 alloy with the tungsten content, which was conducted by combining experimental and theoretical methods. Employed spectroscopic techniques, namely, photoreflectance, photoacoustic spectroscopy, and photoluminescence, allowed observing indirect and direct transitions at high and beyond high-symmetry points of the Brillouin zone (BZ). Two excitons (A and B) associated with the K point of the BZ were observed together with other optical transitions (C and D) related to band nesting. Moreover, we have also identified the indirect transition for the studied crystals. Obtained energies for all transitions were tracked with a tungsten content and compared with results of calculations performed within density functional theory. Furthermore, based on the mentioned comparison, optical transitions were assigned to specific regions of the BZ. Finally, we have obtained bowing parameters for experimentally observed features, for, i.e., thin-film samples: b(A) = 0.13 ± 0.03 eV, b(B) = 0.14 ± 0.03 eV, b(C) = 0.044 ± 0.008 eV, and b(D) = 0.010 ± 0.003 eV.

5.
Nanotechnology ; 30(24): 245708, 2019 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-30836333

RESUMEN

We have examined the influence of flake-substrate effects that affect one and few layers of MoS2 in terms of their electrical and optical properties. In the measurements, we used SiO2/Si substrates with etched cavities and aluminum electrodes. Suspended areas are easily identifiable both on images depicting the topography and on the surface potential maps measured with the Kelvin probe force microscopy. Compared to the SiO2/Si supported material, surface potential decrease is observable at the membrane. The surface potential value of the flakes located on the electrodes is the lowest. PL measurements prove that single MoS2 monolayer was obtained. Suspended regions are also correlated with maps obtained as a result of Raman spectroscopy.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...