Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Int J Biol Macromol ; 258(Pt 1): 128839, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38134998

RESUMEN

In this study, we aim to unveil the potential of itaconyl chondroitin sulfate nanogel (ICSNG) in tackling chronic kidney diseases triggered by the administration of CDDP and doxorubicin (Adriamycin, ADR). To that end, the new drug delivery system (ICSNG) was initially prepared, characterized, and loaded with the target drugs. Thereafter, the in-vivo studies were performed using five equally divided groups of 100 male Sprague-Dawley (SD) rats. Biochemical evaluation and immunohistochemistry studies have revealed the renal toxicity and the ameliorative effects of ICSNG on renal function. When ICSNG-based treatments were contrasted with the CDDP and ADR infected groups, they significantly increased paraoxonase-1 (PON-1), superoxide dismutase (SOD), catalase (CAT) and albumin activity and significantly decreased nitric oxide (NO), tumor necrosis factor alpha (TNF-α), creatinine, urea, and cyclooxygenase-2 (COX-2) activity (p < 0.001). The findings of the current study imply that ICSNG may be able to lessen renal inflammation and damage in chronic kidney disorders brought on by the administration of CDDP and ADR. Interestingly, according to the estimated selectivity indices, the ICSNG-encapsulated drugs have demonstrated superior selectivity for cancer MCF-7 cells, over healthy HSF cells, in comparison to the bare drugs.


Asunto(s)
Cisplatino , Riñón , Polietilenglicoles , Polietileneimina , Ratas , Masculino , Animales , Cisplatino/farmacología , Sulfatos de Condroitina/farmacología , Nanogeles , Ratas Sprague-Dawley , Antioxidantes/farmacología , Doxorrubicina/farmacología , Estrés Oxidativo , Creatinina/metabolismo
2.
Int J Biol Macromol ; 242(Pt 4): 124985, 2023 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-37230447

RESUMEN

AIM: In the present investigation, we compared the effects of mesenchymal stem cells extracted from bone marrow (BMSCs) and crab chitosan nanoparticles (CCNPs) on renal fibrosis in cisplatin (CDDP)-induced kidney injury rats. MATERIAL AND METHODS: 90 male Sprague-Dawley (SD) rats were divided into two equal groups and alienated. Group I was set into three subgroups: the control subgroup, the CDDP-infected subgroup (acute kidney injury), and the CCNPs-treated subgroup. Group II was also divided into three subgroups: the control subgroup, the CDDP-infected subgroup (chronic kidney disease), and the BMSCs-treated subgroup. Through biochemical analysis and immunohistochemical research, the protective effects of CCNPs and BMSCs on renal function have been identified. RESULTS: CCNPs and BMSC treatment resulted in a substantial rise in GSH and albumin and a decrease in KIM-1, MDA, creatinine, urea, and caspase-3 when compared to the infected groups (p < 0.05). CONCLUSION: According to the current research, chitosan nanoparticles and BMSCs may be able to reduce renal fibrosis in acute and chronic kidney diseases caused by CDDP administration, with more improvement of kidney damage resembling normal cells after CCNPs administration.


Asunto(s)
Lesión Renal Aguda , Braquiuros , Quitosano , Células Madre Mesenquimatosas , Ratas , Masculino , Animales , Cisplatino/efectos adversos , Quitosano/farmacología , Ratas Sprague-Dawley , Riñón , Lesión Renal Aguda/inducido químicamente , Lesión Renal Aguda/patología , Fibrosis
3.
Sci Rep ; 12(1): 19903, 2022 11 19.
Artículo en Inglés | MEDLINE | ID: mdl-36402822

RESUMEN

The toxicity of cisplatin (CDDP) toward the renal tubules and its severe effects on the proximal tubules limits its further use in cancer therapy. The current study was undertaken to evaluate the protective effects of gallic acid-grafted O-carboxymethyl chitosan (GA@CMCS) against nephrotoxicity induced by CDDP in rats. Renal injury was assessed in the GA@CMCS/CDDP-treated rats using kidney injury molecule-1 (KIM-1). Moreover, the levels of reduced glutathione (GSH), malondialdehyde (MDA), and nitric oxide (NO) were measured. The comet assay was performed to measure the DNA damage. The renoprotective activity of GA@CMCS was supported by histo- and immuno-pathological studies of the kidney. GA@CMCS significantly normalized the increases in kidney homogenate of KIM-1, MDA, and NO-induced by CDDP and significantly increased GSH as compared with the CDDP group. GA@CMCS also significantly protects rat kidneys from CDDP-induced histo- and immuno-pathological changes. Both biochemical findings and histo- and immuno-pathological evidence showed the renoprotective potential of GA@CMCS against CDDP-induced oxidative stress, inflammation, and renal dysfunction in rats. In conclusion, GA@CMCS has been shown to mitigate the nephrotoxicity impact of CDDP in cancer therapy.


Asunto(s)
Quitosano , Neoplasias , Ratas , Animales , Cisplatino/toxicidad , Ácido Gálico/farmacología , Agua
4.
Int J Biol Macromol ; 207: 741-749, 2022 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-35354071

RESUMEN

AIM: The current study aimed to explore the pretreatment of bone marrow mesenchymal stem cells (BMSCs) with hyaluronic acid (HA) on renal fibrosis in Adriamycin- induced CKD in rats. MATERIAL AND METHODS: Sixty male SD rats were alienated into 4 equal groups; The control group: rats received two saline injections at 1 and 14 days, adriamycin (ADR) group: rats were injected i.v. twice via tail vein at day one and after 2 weeks, BMSCs group; rats were injected i.v. twice after 5 days of each ADR injection, and HA+BMSCs; rats were i.v. injected twice with BMSCs pretreated with 1 mg/ml HA after 5 days of each ADR injection. Protective role of BMSCs on renal function and morphology was detected using biochemical analysis, molecular studies, histopathological, and immunohistohemical investigations. RESULTS: Pretreatment of BMSCs with HA showed significant decrease in KIM-1, and increase in serum albumin compared to CKD group (p <0.05). Moreover, it reduced the expression of the apoptotic marker Caspase-3, the inflammatory markers TNF and IL-6, and the fibrotic markers Wnt7a, ß-catenin, and fibronectin1 than the CKD group (p < 0.05). CONCLUSION: The current outcomes suggested that BMSCs preconditioned with HA could attenuate the renal fibrosis in adriamycin- induced CKD.


Asunto(s)
Trasplante de Células Madre Mesenquimatosas , Células Madre Mesenquimatosas , Insuficiencia Renal Crónica , Animales , Células de la Médula Ósea/metabolismo , Doxorrubicina/efectos adversos , Doxorrubicina/metabolismo , Femenino , Fibrosis , Humanos , Ácido Hialurónico/metabolismo , Riñón/metabolismo , Masculino , Ratas , Ratas Sprague-Dawley , beta Catenina/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...