Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
2.
Front Aging Neurosci ; 14: 878278, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35677200

RESUMEN

Several studies have assessed the effects of intermittent hypoxia-normoxia training (IHNT), intermittent hypoxia-hyperoxia training (IHHT), and obstructive sleep apnea (OSA) on aging and age-related diseases in humans; however, the results remain contradictory. Therefore, this review aims to systematically summarize the available studies on the effects of IHNT, IHHT, and OSA on aging and age-related diseases. Relevant studies were searched from PubMed, Google Scholar, Cochrane Library databases, and through manual searching from reference lists of eligible studies. A total of 38 eligible studies were included in this systematic review. IHHT and IHNT provide positive effects on several age-related parameters including quality of life, cognitive and physical functions, plasma level of glucose and cholesterol/LDL, systolic blood pressure, red blood cells, and inflammation. Moreover, moderate intermittent hypoxia induces telomerase reverse transcriptase (TERT) activity and telomere stabilization, delays induction of senescence-associated markers expression and senescence-associated ß-galactosidase, upregulates pluripotent marker (Oct4), activates a metabolic shift, and raises resistance to pro-apoptotic stimuli. On the contrary, intermittent hypoxia in OSA causes hypertension, metabolic syndrome, vascular function impairment, quality of life and cognitive scores reduction, advanced brain aging, increase in insulin resistance, plasma hydrogen peroxide, GSH, IL-6, hsCRP, leptin, and leukocyte telomere shortening. Thus, it can be speculated that the main factor that determines the direction of the intermittent hypoxia action is the intensity and duration of exposure. There is no direct study to prove that IHNT/IHHT actually increases life expectancy in humans. Therefore, further study is needed to investigate the actual effect of IHNT/IHHT on aging in humans. Systematic Review Registration: www.crd.york.ac.uk/prospero, identifier CRD42022298499.

3.
Life (Basel) ; 12(3)2022 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-35330183

RESUMEN

Intermittent hypoxia-hyperoxia training (IHHT) is a non-pharmacological therapeutic modality for management of some chronic- and age-related pathologies, such as Alzheimer's disease (AD). Our previous studies demonstrated significant improvement of cognitive function after IHHT in the patients with mild cognitive impairment (MCI). The present study further investigated the effects of IHHT on pro-inflammatory factors in healthy elderly individuals and patients with early signs of AD. Twenty-nine subjects (13 healthy subjects without signs of cognitive impairment syndrome and 16 patients diagnosed with MCI; age 52 to 76 years) were divided into four groups: Healthy+Sham (n = 7), Healthy+IHHT (n = 6), MCI+Sham (n = 6), and MCI+IHHT (n = 10). IHHT was carried out 5 days per week for 3 weeks (total 15 sessions), and each daily session included 4 cycles of 5-min hypoxia (12% FIO2) and 3-min hyperoxia (33% FIO2). Decline in cognitive function indices was observed initially in both MCI+Sham and MCI+IHHT groups. The sham training did not alter any of the parameters, whereas IHHT resulted in improvement in latency of cognitive evoked potentials, along with elevation in APP110, GDF15 expression, and MMP9 activity in both healthy subjects and those with MCI. Increased MMP2 activity, HMGB1, and P-selectin expression and decreased NETs formation and Aß expression were also observed in the MCI+IHHT group. There was a negative correlation between MoCA score and the plasma GDF15 expression (R = −0.5799, p < 0.05) before the initiation of IHHT. The enhanced expression of GDF15 was also associated with longer latency of the event-related potentials P330 and N200 (R = 0.6263, p < 0.05 and R = 0.5715, p < 0.05, respectively). In conclusion, IHHT upregulated circulating levels of some inflammatory markers, which may represent potential triggers for cellular adaptive reprogramming, leading to therapeutic effects against cognitive dysfunction and neuropathological changes during progression of AD. Further investigation is needed to clarify if there is a causative relationship between the improved cognitive function and the elevated inflammatory markers following IHHT.

4.
Front Aging ; 2: 783144, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35822043

RESUMEN

The effects of short-term hyperoxia on age-related diseases and aging biomarkers have been reported in animal and human experiments using different protocols; however, the findings of the studies remain conflicting. In this systematic review, we summarized the existing reports in the effects of short-term hyperoxia on age-related diseases, hypoxia-inducible factor 1α (HIF-1α), and other oxygen-sensitive transcription factors relevant to aging, telomere length, cellular senescence, and its side effects. This review was done as described in the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guideline. A systematic search was done in PubMed, Google Scholar, and Cochrane Library and from the references of selected articles to identify relevant studies until May 2021. Of the total 1,699 identified studies, 17 were included in this review. Most of the studies have shown significant effects of short-term hyperoxia on age-related diseases and aging biomarkers. The findings of the studies suggest the potential benefits of short-term hyperoxia in several clinical applications such as for patients undergoing stressful operations, restoration of cognitive function, and the treatment of severe traumatic brain injury. Short-term hyperoxia has significant effects in upregulation or downregulation of transcription factors relevant to aging such as HIF-1α, nuclear factor kappa-light-chain-enhancer of activated B-cells (NF-kB), and nuclear factor (erythroid-derived 2)-like 2 (NRF2) among others. Short-term hyperoxia also has significant effects to increase antioxidant enzymes, and increase telomere length and clearance of senescent cells. Some of the studies have also reported adverse consequences including mitochondrial DNA damage and nuclear cataract formation depending on the dose and duration of oxygen exposure. In conclusion, short-term hyperoxia could be a feasible treatment option to treat age-related disease and to slow aging because of its ability to increase antioxidant enzymes, significantly increase telomere length and clearance of senescent cells, and improve cognitive function, among others. The reported side effects of hyperoxia vary depending on the dose and duration of exposure. Therefore, it seems that additional studies for better understanding the beneficial effects of short-term hyperoxia and for minimizing side effects are necessary for optimal clinical application.

5.
Acta Pharmacol Sin ; 41(12): 1539-1546, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33110240

RESUMEN

The pandemic of coronavirus disease 2019 (COVID-19) and its pathogen, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) have become the greatest current threat to global public health. The highly infectious SARS-CoV-2 virus primarily attacks pulmonary tissues and impairs gas exchange leading to acute respiratory distress syndrome (ARDS) and systemic hypoxia. The current pharmacotherapies for COVID-19 largely rely on supportive and anti-thrombi treatment and the repurposing of antimalarial and antiviral drugs such as hydroxychloroquine and remdesivir. For a better mechanistic understanding of COVID-19, our present review focuses on its primary pathophysiologic features: hypoxia and cytokine storm, which are a prelude to multiple organ failure and lethality. We discussed a possible link between the activation of hypoxia inducible factor 1α (HIF-1α) and cell entry of SARS-CoV-2, since HIF-1α is shown to suppress the angiotensin-converting enzyme 2 (ACE2) receptor and transmembrane protease serine 2 (TMPRSS2) and upregulate disintegrin and metalloproteinase domain-containing protein 17 (ADAM17). In addition, the protein targets of HIF-1α are involved with the activation of pro-inflammatory cytokine expression and the subsequent inflammatory process. Furthermore, we hypothesized a potential utility of so-called "hypoxic conditioning" to activate HIF-1α-induced cytoprotective signaling for reduction of illness severity and improvement of vital organ function in patients with COVID-19. Taken together, we would propose further investigations into the hypoxia-related molecular mechanisms, from which novel targeted therapies can be developed for the improved management of COVID-19.


Asunto(s)
Antivirales/farmacología , Tratamiento Farmacológico de COVID-19 , Animales , COVID-19/fisiopatología , COVID-19/virología , Síndrome de Liberación de Citoquinas/virología , Desarrollo de Medicamentos , Reposicionamiento de Medicamentos , Humanos , Hipoxia/tratamiento farmacológico , Hipoxia/virología , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Terapia Molecular Dirigida , SARS-CoV-2/aislamiento & purificación , SARS-CoV-2/patogenicidad
6.
Int J Mol Sci ; 20(21)2019 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-31671598

RESUMEN

Alzheimer's disease (AD) affects not only the central nervous system, but also peripheral blood cells including neutrophils and platelets, which actively participate in pathogenesis of AD through a vicious cycle between platelets aggregation and production of excessive amyloid beta (Aß). Platelets adhesion on amyloid plaques also increases the risk of cerebral microcirculation disorders. Moreover, activated platelets release soluble adhesion molecules that cause migration, adhesion/activation of neutrophils and formation of neutrophil extracellular traps (NETs), which may damage blood brain barrier and destroy brain parenchyma. The present study examined the effects of intermittent hypoxic-hyperoxic training (IHHT) on elderly patients with mild cognitive impairment (MCI), a precursor of AD. Twenty-one participants (age 51-74 years) were divided into three groups: Healthy Control (n = 7), MCI+Sham (n = 6), and MCI+IHHT (n = 8). IHHT was carried out five times per week for three weeks (total 15 sessions). Each IHHT session consisted of four cycles of 5-min hypoxia (12% FIO2) and 3-min hyperoxia (33% FIO2). Cognitive parameters, Aß and amyloid precursor protein (APP) expression, microRNA 29, and long non-coding RNA in isolated platelets as well as NETs in peripheral blood were investigated. We found an initial decline in cognitive function indices in both MCI+Sham and MCI+IHHT groups and significant correlations between cognitive test scores and the levels of circulating biomarkers of AD. Whereas sham training led to no change in these parameters, IHHT resulted in the improvement in cognitive test scores, along with significant increase in APP ratio and decrease in Aß expression and NETs formation one day after the end of three-week IHHT. Such effects on Aß expression and NETs formation remained more pronounced one month after IHHT. In conclusion, our results from this pilot study suggested a potential utility of IHHT as a new non-pharmacological therapy to improve cognitive function in pre-AD patients and slow down the development of AD.


Asunto(s)
Enfermedad de Alzheimer/complicaciones , Biomarcadores/sangre , Disfunción Cognitiva/terapia , Terapia Respiratoria/métodos , Anciano , Enfermedad de Alzheimer/sangre , Enfermedad de Alzheimer/psicología , Estudios de Casos y Controles , Cognición , Disfunción Cognitiva/sangre , Disfunción Cognitiva/psicología , Femenino , Humanos , Hiperoxia , Hipoxia , Masculino , Persona de Mediana Edad , Proyectos Piloto , Resultado del Tratamiento
7.
High Alt Med Biol ; 20(4): 383-391, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31589074

RESUMEN

Background: Intermittent hypoxia/normoxia training (IHT) is considered a possible means to alleviate chronic diseases such as diabetes. In the last decade, another method of intermittent hypoxia/hyperoxia training (IHHT) began to enter the clinical practice, when the periods of breathing with atmospheric air are replaced by breathing a hyperoxic mixture. The present study compared the impact of adaptation to IHHT versus IHT on some metabolic variables in prediabetic patients. Methods: A placebo-controlled trial included 55 patients with prediabetes, sea level residents, ages 51-74 years. Control Group (16 patients) took sham 3-week course, and the IHHT Group (17 patients) and IHT Group (22 patients) received similar actual sessions of IHHT or IHT five times a week for 3 weeks, each session consisting four cycles of 5 minutes of hypoxia (12% O2) followed by 3 minutes of hyperoxia (IHHT, 33% O2) or 5 minutes of normoxia (IHT, breathing room air). Fasting glucose, oral glucose tolerance test (OGTT), blood lipids, and the level of blood oxygen saturation (SpO2) were investigated at baseline, as well as 1 day and 1 month after IHHT/IHT termination. Results: The study showed the same positive effect of two types of training: equal reduction of serum glucose concentrations, both fasting and 2 hours of OGTT; decreased total blood cholesterol and low-density lipoproteins; and an equally smaller drop in SpO2 during acute hypoxic test (breathing with 12% O2 for 20 minutes). Improved parameters persisted 1 month after training termination in both groups. Conclusion: One of the advantages of IHHT over IHT observed in this study could be some reduction in the duration of the sessions due to shortening reoxygenation periods. Further studies are required to search for additional beneficial effects of IHHT when using other training modes or other pathologies.


Asunto(s)
Adaptación Fisiológica/fisiología , Terapia por Ejercicio/métodos , Hiperoxia , Hipoxia , Terapia por Inhalación de Oxígeno/métodos , Estado Prediabético/terapia , Anciano , Análisis de los Gases de la Sangre , Glucemia/metabolismo , Tolerancia al Ejercicio/fisiología , Ayuno , Femenino , Prueba de Tolerancia a la Glucosa , Humanos , Masculino , Persona de Mediana Edad , Consumo de Oxígeno , Estado Prediabético/sangre , Estado Prediabético/fisiopatología , Resultado del Tratamiento
8.
Pathophysiology ; 26(3-4): 219-226, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31202527

RESUMEN

Many studies have been dedicated to hypertension and hypercholesterolemia, as they are the primary conditions that influence the unfolded protein response (UPR). However, the concurrent effects of these two factors are unknown. Our research used spontaneously hypertensive rats (SHR) fed a cholesterol enriched diet (CED) as model of atherosclerosis formation to discover what effect the simultaneous actions of hypertension and hypercholesterolemia have on the UPR. The combination of hypertension and consumption of a CED (not the CED alone) caused the formation of early atherosclerotic features. Both increased expression of the CCAAT-enhancer-binding protein (CHOP) and the insulin induced gene 1 (INSIG1), which is the target gene of the sterol regulatory element-binding protein 1-c (SREBP1-c), and decreased expression of the spliced x-box binding protein1 (sXBP1) mRNA were observed in the SHR fed a CED. Cholesterol overload strongly suppressed glucose regulated protein 78 (GRP78), glucose regulated protein 94 (GRP 94), and the expression of CHOP and INSIG1 mRNA in both normotensive and hypertensive rats. Unlike other UPR factors, the sXBP1 mRNA expression was strongly downregulated in SHR fed a normal diet but upregulated in those fed a CED. The changes to UPR in the SHR fed a CED were associated with improvement of the initially impaired heart function of the rats.

9.
Cell Physiol Biochem ; 39(1): 193-204, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27336612

RESUMEN

BACKGROUND/AIMS: NO and reactive nitrogen species (RNS) are thought to be physiologically important effectors of mitochondrial calcium transport, but this issue was not studied in a living organism. According to literature, the modulation of Ca2+ uptake could influence RNS production via the action on mitochondrial NO synthase (mtNOS). The aim of this work was to study the effect of in vivo administration of NO donor nitroglycerine (NG) on matrix Ca2+ accumulation, RNS production and mtNOS activity. METHODS: Ca2+ uptake was studied spectrophotometrically with arsenazo-III. The amounts of stable RNS (nitrite, nitrate and nitrosothiols) and L-citrulline, the product of enzymatic NOS activity, were determined analytically. RESULTS: NG administration resulted in dose-dependent short-term increase in Ca2+-uptake accompanied by essential rise in L-citrulline and RNS content in mitochondria. In parallel, dose-dependent elevation of hydroperoxide production was detected. Ca2+-uniporter activity was not affected, but mitochondrial permeability transition pore (MPTP) was effectively blocked by NO. CONCLUSION: Our results indicate that MPTP blockage by NO was the primary cause for the increase in calcium uptake which eventually resulted in the activation of mtNOS and RNS production. Improved Ca2+ accumulation in mitochondria, together with MPTP blockage, may contribute to well-known cardioprotective effects of pharmacological donors of nitric oxide.


Asunto(s)
Calcio/metabolismo , Mitocondrias/efectos de los fármacos , Donantes de Óxido Nítrico/farmacología , Nitroglicerina/farmacología , Especies de Nitrógeno Reactivo/biosíntesis , Animales , Transporte Biológico/efectos de los fármacos , Calcio/farmacocinética , Citrulina/metabolismo , Relación Dosis-Respuesta a Droga , Peróxido de Hidrógeno/metabolismo , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Mitocondrias/metabolismo , Mitocondrias/fisiología , Mitocondrias Cardíacas/efectos de los fármacos , Mitocondrias Cardíacas/metabolismo , Mitocondrias Cardíacas/fisiología , Mitocondrias Hepáticas/efectos de los fármacos , Mitocondrias Hepáticas/metabolismo , Mitocondrias Hepáticas/fisiología , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Poro de Transición de la Permeabilidad Mitocondrial , Nitratos/metabolismo , Óxido Nítrico Sintasa/metabolismo , Nitritos/metabolismo , Ratas Wistar , S-Nitrosotioles/metabolismo
10.
Fiziol Zh (1994) ; 52(6): 101-8, 2006.
Artículo en Inglés | MEDLINE | ID: mdl-17333630

RESUMEN

The loss of fertility as a consequence of chemoradiotherapy is a considerable problem. It can affect the psychological equilibrium and quality of life for women cancer survivors. In recent years, the possibility of cryopresenrvation of ovarian tissue following auto transplantation, opens new promise in the attempt to restore fertility. In addition to psychological and ethical concerns of this procedure, there are risks of retransplantation of tumor cells and recurrence of malignancy. In this review we will focus on the most recent achievements in cryopreservation of oocytes and ovarian tissue and will attempt to answer questions about the safety and effectiveness of restoration of fertility by cryopreservation of oocytes or ovarian tissue.


Asunto(s)
Criopreservación , Fertilidad/fisiología , Neoplasias , Oocitos/fisiología , Ovario/fisiología , Medicina Reproductiva/ética , Animales , Discusiones Bioéticas , Criopreservación/ética , Femenino , Fertilidad/ética , Fertilización In Vitro , Humanos , Neoplasias/fisiopatología , Ovario/trasplante , Riesgo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...