Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Curr Issues Mol Biol ; 46(1): 689-709, 2024 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-38248347

RESUMEN

Leaf rust (Puccinia triticina Eriks) is a wheat disease causing substantial yield losses in wheat production globally. The identification of genetic resources with permanently effective resistance genes and the generation of mutant lines showing increased levels of resistance allow the efficient incorporation of these target genes into germplasm pools by marker-assisted breeding. In this study, new mutant (M3 generation) lines generated from the rust-resistant variety Kazakhstanskaya-19 were developed using gamma-induced mutagenesis through 300-, 350-, and 400-Gy doses. In field trials after leaf rust inoculation, 75 mutant lines showed adult plant resistance. These lines were evaluated for resistance at the seedling stage via microscopy in greenhouse experiments. Most of these lines (89.33%) were characterized as resistant at both developmental stages. Hyperspectral imaging analysis indicated that infected leaves of wheat genotypes showed increased relative reflectance in visible and near-infrared light compared to the non-infected genotypes, with peak means at 462 and 644 nm, and 1936 and 2392 nm, respectively. Five spectral indexes, including red edge normalized difference vegetation index (RNDVI), structure-insensitive pigment index (SIPI), ratio vegetation index (RVSI), water index (WI), and normalized difference water index (NDWI), demonstrated significant potential for determining disease severity at the seedling stage. The most significant differences in reflectance between susceptible and resistant mutant lines appeared at 694.57 and 987.51 nm. The mutant lines developed were also used for the development and validation of KASP markers for leaf rust resistance genes Lr1, Lr2a, Lr3, Lr9, Lr10, and Lr17. The mutant lines had high frequencies of "a" resistance alleles (0.88) in all six Lr genes, which were significantly associated with seedling resistance and suggest the potential of favorable haplotype introgression through functional markers. Nine mutant lines characterized by the presence of "b" alleles in Lr9 and Lr10-except for one line with allele "a" in Lr9 and three mutant lines with allele "a" in Lr10-showed the progressive development of fungal haustorial mother cells 72 h after inoculation. One line from 300-Gy-dosed mutant germplasm with "b" alleles in Lr1, Lr2a, Lr10, and Lr17 and "a" alleles in Lr3 and Lr9 was characterized as resistant based on the low number of haustorial mother cells, suggesting the contribution of the "a" alleles of Lr3 and Lr9.

2.
Front Plant Sci ; 14: 1252123, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37936932

RESUMEN

Wheat leaf rust (Puccinia triticina) is one of the most significant fungal diseases of wheat, causing substantial yield losses worldwide. Infestation is currently being reduced by fungicide treatments and mostly vertical resistance. However, these measures often break down when the fungal virulence pattern changes, resulting in a breakdown of vertical resistances. In contrast, the prehaustorial resistance (phr) that occurs in the einkorn-wheat leaf rust interaction is race-independent, characterized by an early defense response of plants during the prehaustorial phase of infestation. Einkorn (Triticum monococcum) is closely related to Triticum urartu as a progenitor of wheat and generally shows a high level of resistance against leaf rust of wheat. Hence, einkorn can serve as a valuable source to improve the level of resistance to the pathogen in future wheat lines. In particular, einkorn accession PI272560 is known to exhibit a hypersensitive prehaustorial effector triggered immune reaction, preventing the infection of P. triticina. Remarkably, this effector-triggered immune reaction turned out to be atypical as it is non-race-specific (horizontal). To genetically dissect the prehaustorial resistance (phr) in PI272560, a biparental F2 population of 182 plants was established after crossing PI272560 with the susceptible T. boeoticum accession 36554. Three genetic maps comprising 2,465 DArT-seq markers were constructed, and a major QTL was detected on chromosome 5A. To locate underlying candidate genes, marker sequences flanking the respective QTL were aligned to the T. urartu reference genome and transcriptome data available from the parental accessions were used. Within the QTL interval of approximately 16.13 million base pairs, the expression of genes under inoculated and non-inoculated conditions was analyzed via a massive analysis of cDNA (MACE). Remarkably, a single gene located 3.4 Mbp from the peak marker within the major QTL was upregulated (20- to 95-fold) after the inoculation in the resistant accession in comparison to the susceptible T. boeoticum accession. This gene belongs to a berberine bridge enzyme-like protein that is suspected to interact on the plant surface with glycoside hydrolases (GH) secreted by the fungus and to induce a hypersensitive defense reaction in the plant after fungal infections.

3.
J Exp Bot ; 74(9): 2912-2931, 2023 04 27.
Artículo en Inglés | MEDLINE | ID: mdl-36449391

RESUMEN

Increase in ambient temperatures caused by climate change affects various morphological and developmental traits of plants, threatening crop yield stability. In the model plant Arabidopsis thaliana, EARLY FLOWERING 3 (ELF3) plays prominent roles in temperature sensing and thermomorphogenesis signal transduction. However, how crop species respond to elevated temperatures is poorly understood. Here, we show that the barley ortholog of AtELF3 interacts with high temperature to control growth and development. We used heterogeneous inbred family (HIF) pairs generated from a segregating mapping population and systematically studied the role of exotic ELF3 variants in barley temperature responses. An exotic ELF3 allele of Syrian origin promoted elongation growth in barley at elevated temperatures, whereas plant area and estimated biomass were drastically reduced, resulting in an open canopy architecture. The same allele accelerated inflorescence development at high temperature, which correlated with early transcriptional induction of MADS-box floral identity genes BM3 and BM8. Consequently, barley plants carrying the exotic ELF3 allele displayed stable total grain number at elevated temperatures. Our findings therefore demonstrate that exotic ELF3 variants can contribute to phenotypic and developmental acclimation to elevated temperatures, providing a stimulus for breeding of climate-resilient crops.


Asunto(s)
Arabidopsis , Hordeum , Temperatura , Alelos , Fitomejoramiento , Arabidopsis/genética , Regulación de la Expresión Génica de las Plantas , Flores/genética
4.
Sci Data ; 9(1): 784, 2022 12 26.
Artículo en Inglés | MEDLINE | ID: mdl-36572688

RESUMEN

Plant genetic resources (PGR) stored at genebanks are humanity's crop diversity savings for the future. Information on PGR contrasted with modern cultivars is key to select PGR parents for pre-breeding. Genotyping-by-sequencing was performed for 7,745 winter wheat PGR samples from the German Federal ex situ genebank at IPK Gatersleben and for 325 modern cultivars. Whole-genome shotgun sequencing was carried out for 446 diverse PGR samples and 322 modern cultivars and lines. In 19 field trials, 7,683 PGR and 232 elite cultivars were characterized for resistance to yellow rust - one of the major threats to wheat worldwide. Yield breeding values of 707 PGR were estimated using hybrid crosses with 36 cultivars - an approach that reduces the lack of agronomic adaptation of PGR and provides better estimates of their contribution to yield breeding. Cross-validations support the interoperability between genomic and phenotypic data. The here presented data are a stepping stone to unlock the functional variation of PGR for European pre-breeding and are the basis for future breeding and research activities.


Asunto(s)
Fitomejoramiento , Triticum , Genotipo , Estaciones del Año , Triticum/genética
5.
Nat Genet ; 54(10): 1544-1552, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36195758

RESUMEN

The great efforts spent in the maintenance of past diversity in genebanks are rationalized by the potential role of plant genetic resources (PGR) in future crop improvement-a concept whose practical implementation has fallen short of expectations. Here, we implement a genomics-informed prebreeding strategy for wheat improvement that does not discriminate against nonadapted germplasm. We collect and analyze dense genetic profiles for a large winter wheat collection and evaluate grain yield and resistance to yellow rust (YR) in bespoke core sets. Breeders already profit from wild introgressions but PGR still offer useful, yet unused, diversity. Potential donors of resistance sources not yet deployed in breeding were detected, while the prebreeding contribution of PGR to yield was estimated through 'Elite × PGR' F1 crosses. Genomic prediction within and across genebanks identified the best parents to be used in crosses with elite cultivars whose advanced progenies can outyield current wheat varieties in multiple field trials.


Asunto(s)
Fitomejoramiento , Triticum , Genómica , Plantas , Triticum/genética
6.
Front Plant Sci ; 13: 735256, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35528936

RESUMEN

Genomic prediction has been established in breeding programs to predict the genotypic values of selection candidates without phenotypic data. First results in wheat showed that genomic predictions can also prove useful to select among material for which phenotypic data are available. In such a scenario, the selection candidates are evaluated with low intensity in the field. Genome-wide effects are estimated from the field data and are then used to predict the genotypic values of the selection candidates. The objectives of our simulation study were to investigate the correlations r(y, g) between genomic predictions y and genotypic values g and to compare these with the correlations r(p, g) between phenotypic values p and genotypic values g. We used data from a yield trial of 250 barley lines to estimate variance components and genome-wide effects. These parameters were used as basis for simulations. The simulations included multiple crossing schemes, population sizes, and varying sizes of the components of the masking variance. The genotypic values g of the selection candidates were obtained by genetic simulations, the phenotypic values p by simulating evaluation in the field, and the genomic predictions y by RR-BLUP effect estimation from the phenotypic values. The correlations r(y, g) were greater than the correlations r(p, g) for all investigated scenarios. We conclude that using genomic predictions for selection among candidates tested with low intensity in the field can proof useful for increasing the efficiency of barley breeding programs.

7.
Plant Genome ; 14(3): e20142, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34498808

RESUMEN

Novel resistance sources to the pathogen Puccinia striiformis f. sp. tritici, which causes yellow rust (stripe rust), a widespread devastating foliar disease in wheat (Triticum aestivum L.), are in demand. Here, we tested two doubled haploid (DH) spring wheat populations derived from the genetic resources for resistance to yellow rust in field trials in Germany and Egypt. Additionally, we performed tests for all-stage resistance (seedling resistance). We performed linkage mapping based on 15k Infinium SNP chip genotyping data that resulted in 3,567 and 3,457 polymorphic markers for DH Population 1 (103 genotypes) and DH Population 2 (148 genotypes), respectively. In DH Population 1, we identified a major and consistent quantitative trait locus (QTL) on chromosome 1B that explained up to 28 and 39% of the phenotypic variation in the field and seedling tests, respectively. The favorable allele was contributed by the line 'TRI-5645', a landrace from Iran, and is most probably the yellow rust resistance (Yr) gene Yr10. In DH Population 2, the favorable allele of a major QTL on chromosome 6B was contributed by the line 'TRI-5310', representing the variety 'Eureke' from France. This QTL was mainly effective in the German environments and explained up to 36% of the phenotypic variation. In Egypt, however, only a moderate resistance QTL was identified in the field tests and no resistance QTL was observed in the seedling tests. Our results demonstrate the usefulness of genetic resources to identify novel sources of resistance to yellow rust, including the "Warrior" race PstS10.


Asunto(s)
Sitios de Carácter Cuantitativo , Triticum , Resistencia a la Enfermedad/genética , Haploidia , Enfermedades de las Plantas/genética , Triticum/genética
8.
Biology (Basel) ; 10(7)2021 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-34356483

RESUMEN

Leaf rust resistance is of high importance for a sustainable European wheat production. The expression of known resistance genes starts at different developmental stages of wheat. Breeding for resistance can be supported by a fast, precise, and resource-saving phenotyping. The examination of detached leaf assays of juvenile plants inoculated under controlled conditions and phenotyped by a robotic- and computer-based, high-throughput system is a promising approach in this respect. Within this study, the validation of the phenotyping workflow was conducted based on a winter wheat set derived from Central Europe and examined at different plant developmental stages. Moderate Pearson correlations of 0.38-0.45 comparing leaf rust resistance of juvenile and adult plants were calculated and may be mainly due to different environmental conditions. Specially, the infection under controlled conditions was limited by the application of a single rust race at only one time point. Our results suggest that the diversification with respect to the applied rust race spectrum is promising to increase the consistency of detached leaf assays and the transferability of its results to the field.

9.
Plant Cell Environ ; 44(10): 3445-3458, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34212402

RESUMEN

Aegilops tauschii, the progenitor of the wheat D genome, contains extensive diversity for biotic and abiotic resistance. Lr21 is a leaf rust resistance gene, which did not enter the initial gene flow from Ae. tauschii into hexaploid wheat due to restrictive hybridization events. Here, we used population genetics and high-resolution comparative genomics to study evolutionary and functional divergence of Lr21 in diploid and hexaploid wheats. Population genetics identified the original Lr21, lr21-1 and lr21-2 alleles and their evolutionary history among Ae. tauschii accessions. Comparative genetics of Lr21 variants between Ae. tauschii and cultivated genotypes suggested at least two independent polyploidization events in bread wheat evolution. Further, a recent re-birth of a unique Lr21-tbk allele and its neofunctionalization was discovered in the hexaploid wheat cv. Tobak. Altogether, four independent alleles were investigated and validated for leaf rust resistance in diploid, synthetic hexaploid and cultivated wheat backgrounds. Besides seedling resistance, we uncover a new role of the Lr21 gene in conferring an adult plant field resistance. Seedling and adult plant resistance turned out to be correlated with developmentally dependent variation in Lr21 expression. Our results contribute to understand Lr21 evolution and its role in establishing a broad-spectrum leaf rust resistance in wheat.


Asunto(s)
Aegilops/genética , Evolución Molecular , Genes de Plantas , Enfermedades de las Plantas/genética , Resistencia a la Enfermedad/genética , Hormona de Crecimiento Humana , Enfermedades de las Plantas/microbiología
10.
Front Plant Sci ; 12: 684671, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35003147

RESUMEN

Stripe rust caused by the biotrophic fungus Puccinia striiformis Westend. is one of the most important diseases of wheat worldwide, causing high yield and quality losses. Growing resistant cultivars is the most efficient way to control stripe rust, both economically and ecologically. Known resistance genes are already present in numerous cultivars worldwide. However, their effectiveness is limited to certain races within a rust population and the emergence of stripe rust races being virulent against common resistance genes forces the demand for new sources of resistance. Multiparent advanced generation intercross (MAGIC) populations have proven to be a powerful tool to carry out genetic studies on economically important traits. In this study, interval mapping was performed to map quantitative trait loci (QTL) for stripe rust resistance in the Bavarian MAGIC wheat population, comprising 394 F6 : 8 recombinant inbred lines (RILs). Phenotypic evaluation of the RILs was carried out for adult plant resistance in field trials at three locations across three years and for seedling resistance in a growth chamber. In total, 21 QTL for stripe rust resistance corresponding to 13 distinct chromosomal regions were detected, of which two may represent putatively new QTL located on wheat chromosomes 3D and 7D.

11.
Theor Appl Genet ; 134(1): 37-51, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33201290

RESUMEN

KEY MESSAGE: The Bavarian MAGIC Wheat population, comprising 394 F6:8 recombinant inbred lines was phenotyped for Puccinia triticina resistance in multi-years' field trials at three locations and in a controlled environment seedling test. Simple intervall mapping revealed 19 QTL, corresponding to 11 distinct chromosomal regions. The biotrophic rust fungus Puccinia triticina is one of the most important wheat pathogens with the potential to cause yield losses up to 70%. Growing resistant cultivars is the most cost-effective and environmentally friendly way to encounter this problem. The emergence of leaf rust races being virulent against common resistance genes increases the demand for wheat varieties with novel resistances. In the past decade, the use of complex experimental populations, like multiparent advanced generation intercross (MAGIC) populations, has risen and offers great advantages for mapping resistances. The genetic diversity of multiple parents, which has been recombined over several generations, leads to a broad phenotypic diversity, suitable for high-resolution mapping of quantitative traits. In this study, interval mapping was performed to map quantitative trait loci (QTL) for leaf rust resistance in the Bavarian MAGIC Wheat population, comprising 394 F6:8 recombinant inbred lines (RILs). Phenotypic evaluation of the RILs for adult plant resistance was carried out in field trials at three locations and two years, as well as in a controlled-environment seedling inoculation test. In total, interval mapping revealed 19 QTL, which corresponded to 11 distinct chromosomal regions controlling leaf rust resistance. Six of these regions may represent putative new QTL. Due to the elite parental material, RILs identified to be resistant to leaf rust can be easily introduced in breeding programs.


Asunto(s)
Resistencia a la Enfermedad/genética , Enfermedades de las Plantas/genética , Puccinia/patogenicidad , Sitios de Carácter Cuantitativo , Triticum/genética , Mapeo Cromosómico , Cruzamientos Genéticos , Fitomejoramiento , Enfermedades de las Plantas/microbiología , Triticum/microbiología
12.
Front Plant Sci ; 11: 594113, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33193553

RESUMEN

Improving leaf rust and stripe rust resistance is a central goal in wheat breeding. The objectives of this study were to (1) elucidate the genetic basis of leaf rust and stripe rust resistance in a hybrid wheat population, (2) compare the findings using a previously published hybrid wheat data set, and (3) contrast the prediction accuracy with those of genome-wide prediction. The hybrid wheat population included 1,744 single crosses from 236 parental lines. The genotypes were fingerprinted using a 15k SNP array and evaluated for leaf rust and stripe rust resistance in multi-location field trials. We observed a high congruency of putative quantitative trait loci (QTL) for leaf rust resistance between both populations. This was not the case for stripe rust resistance. Accordingly, prediction accuracy of the detected QTL was moderate for leaf rust but low for stripe rust resistance. Genome-wide selection increased the prediction accuracy slightly for stripe rust albeit at a low level but not for leaf rust. Thus, our findings suggest that marker-assisted selection seems to be a robust and efficient tool to improve leaf rust resistance in European wheat hybrids.

13.
Plant Methods ; 16: 123, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32944061

RESUMEN

BACKGROUND: The rising availability of assemblies of large genomes (e.g. bread and durum wheat, barley) and their annotations deliver the basis to graphically present genome organization of parents and progenies on a physical scale. Genetic maps are a very important tool for breeders but often represent distorted models of the actual chromosomes, e.g., in centromeric and telomeric regions. This biased picture might lead to imprecise assumptions and estimations about the size and complexity of genetic regions and the selection of suitable molecular markers for the incorporation of traits in breeding populations or near-isogenic lines (NILs). Some software packages allow the graphical illustration of genotypic data, but to the best of our knowledge, suitable software packages that allow the comparison of genotypic data on the physical and genetic scale are currently unavailable. RESULTS: We developed a simple Java-based-software called GenoTypeMapper (GTM) for comparing genotypic data on genetic and physical maps and tested it for effectiveness on data of two NILs that carry QTL-regions for drought stress tolerance from wild emmer on chromosome 2BS and 7AS. Both NILs were more tolerant to drought stress than their recurrent parents but exhibited additional undesirable traits such as delayed heading time. CONCLUSIONS: In this article, we illustrate that the software easily allows users to display and identify additional chromosomal introgressions in both NILs originating from the wild emmer parent. The ability to detect and diminish linkage drag can be of particular interest for pre-breeding purposes and the developed software is a well-suited tool in this respect. The software is based on a simple allele-matching algorithm between the offspring and parents of a crossing scheme. Despite this simple approach, GTM seems to be the only software that allows us to analyse, illustrate and compare genotypic data of offspring of different crossing schemes with up to four parents in two different maps. So far, up to 500 individuals with a maximum number of 50,000 markers can be examined with the software. The main limitation that hampers the performance of the software is the number of markers that are examined in parallel. Since each individual must be analysed separately, a maximum of ten individuals can currently be displayed in a single run. On a computer with an Intel five processor of the 8th generation, GTM can reliably either analyse a single individual with up to 12,000 markers or ten individuals with up to 3,600 markers in less than five seconds. Future work aims to improve the performance of the software so that more complex crossing schemes with more parents and more markers can be analysed.

14.
Theor Appl Genet ; 133(7): 2171-2181, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32281003

RESUMEN

KEY MESSAGE: Hybrid wheat breeding is a promising strategy to improve the level of leaf rust and stripe rust resistance in wheat. Leaf rust and stripe rust belong to the most important fungal diseases in wheat production. Due to a dynamic development of new virulent races, epidemics appear in high frequency and causes significant losses in grain yield and quality. Therefore, research is needed to develop strategies to breed wheat varieties carrying highly efficient resistances. Stacking of dominant resistance genes through hybrid breeding is such an approach. Within this study, we investigated the genetic architecture of leaf rust and stripe rust resistance of 1750 wheat hybrids and their 230 parental lines using a genome-wide association study. We observed on average a lower rust susceptibility for hybrids in comparison to their parental inbred lines and some hybrids outperformed their better parent with up to 56%. Marker-trait associations were identified on chromosome 3D and 4A for leaf rust and on chromosome 2A, 2B, and 6A for stripe rust resistance by using a genome-wide association study with a Bonferroni-corrected threshold of P < 0.10. Detected loci on chromosomes 4A and 2A were located within previously reported genomic regions affecting leaf rust and stripe rust resistance, respectively. The degree of dominance was for most associations favorable in the direction of improved resistance. Thus, resistance can be increased in hybrid wheat breeding by fixing complementary leaf rust and stripe rust resistance genes with desired dominance effects in opposite parental pools.


Asunto(s)
Basidiomycota/patogenicidad , Resistencia a la Enfermedad/genética , Fitomejoramiento , Sitios de Carácter Cuantitativo , Triticum/genética , Mapeo Cromosómico , Cromosomas de las Plantas , Estudios de Asociación Genética , Genómica , Genotipo , Fenotipo , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/prevención & control
15.
Front Plant Sci ; 9: 1728, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30568663

RESUMEN

In the majority of wheat growing areas worldwide, the incidence of drought stress has increased significantly resulting in a negative impact on plant development and grain yield. Arbuscular mycorrhizal symbiosis is known to improve drought stress tolerance of wheat. However, quantitative trait loci (QTL) involved in the response to drought stress conditions in the presence of mycorrhizae are largely unknown. Therefore, a diverse set consisting of 94 bread wheat genotypes was phenotyped under drought stress and well watered conditions in the presence and absence of mycorrhizae. Grain yield and yield components, drought stress related traits as well as response to mycorrhizae were assessed. In parallel, wheat accessions were genotyped by using the 90k iSelect chip, resulting in a set of 15511 polymorphic and mapped SNP markers, which were used for genome-wide association studies (GWAS). In general, drought stress tolerance of wheat was significantly increased in the presence of mycorrhizae compared to drought stress tolerance in the absence of mycorrhizae. However, genotypes differed in their response to mycorrhizae under drought stress conditions. Several QTL regions on different chromosomes were detected associated with grain yield and yield components under drought stress conditions. Furthermore, two genome regions on chromosomes 3D and 7D were found to be significantly associated with the response to mycorrhizae under drought stress conditions. Overall, the results reveal that inoculation of wheat with mycorrhizal fungi significantly improves drought stress tolerance and that QTL regions associated with the response to mycorrhizae under drought stress conditions exist in wheat. Further research is necessary to validate detected QTL regions. However, this study may be the starting point for the identification of candidate genes associated with drought stress tolerance and response to mycorrhizae under drought stress conditions. Maybe in future, these initial results will help to contribute to use mycorrhizal fungi effectively in agriculture and combine new approaches i.e., use of genotypic variation in response to mycorrhizae under drought stress conditions with existing drought tolerance breeding programs to develop new drought stress tolerant genotypes.

16.
Front Plant Sci ; 9: 1418, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30319677

RESUMEN

Leaf rust caused by Puccinia triticina Eriks belongs to the most important fungal pathogens of wheat (Triticum aestivum L.) and triticale (× Triticosecale). Effective resistance to leaf rust is both, cost-effective and environmentally safe. Many wild Aegilops species carry unknown resistances against fungal diseases and are characterized by a high genetic variability. The main goal of this work was to examine the resistance of (Aegilops tauschii × Secale cereale) × Triticosecale hybrids to leaf rust in inoculation tests with different races of P. triticina. Hybrid plants were selected for the presence of 2D chromosome/s in the triticale background using fluorescence and genomic in situ hybridization. The presence of leaf rust resistance genes was confirmed with closely linked molecular markers, i.e., Xgdm35 and Xgwm296. 14 genotypes of BC2F4 - BC2F6 hybrid plants with the monosomic addition of chromosome 2D (M2DA) were analyzed together with nine control lines. Resistance was determined at the macroscopic and microscopic level at the seedling and adult plant stage (flag leaf). In general, results revealed limited resistance of hybrid plants at the seedling stage, followed by an increase of the resistance level at later stages of plant development. This indicates that respective hybrid plants may exhibit APR resistance conferred by Lr22a introgressed from Ae. tauschii. On the basis of the macroscopic and microscopic analysis, this kind of resistance turned out to be additive and race-specific. We selected four monosomic 2D addition triticale genotypes highly resistant to P. triticina infection at the two main stages of plant development. From the selected genotypes, we obtained 26 doubled haploid lines among which two lines with doubled additional chromosomes 2D of Ae. tauschii can be used for further breeding to increase leaf rust resistance of cultivated triticale.

17.
New Phytol ; 215(2): 779-791, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28517039

RESUMEN

Bread wheat (Triticum aestivum) is a major staple food and therefore of prime importance for feeding the Earth's growing population. Mycorrhiza is known to improve plant growth, but although extensive knowledge concerning the interaction between mycorrhizal fungi and plants is available, genotypic differences concerning the ability of wheat to form mycorrhizal symbiosis and quantitative trait loci (QTLs) involved in mycorrhization are largely unknown. Therefore, a diverse set of 94 bread wheat genotypes was evaluated with regard to root colonization by arbuscular mycorrhizal fungi. In order to identify genomic regions involved in mycorrhization, these genotypes were analyzed using the wheat 90k iSelect chip, resulting in 17 823 polymorphic mapped markers, which were used in a genome-wide association study. Significant genotypic differences (P < 0.0001) were detected in the ability to form symbiosis and 30 significant markers associated with root colonization, representing six QTL regions, were detected on chromosomes 3A, 4A and 7A, and candidate genes located in these QTL regions were proposed. The results reported here provide key insights into the genetics of root colonization by mycorrhizal fungi in wheat.


Asunto(s)
Micorrizas/genética , Raíces de Plantas/microbiología , Sitios de Carácter Cuantitativo , Triticum/genética , Triticum/microbiología , Estudio de Asociación del Genoma Completo , Genotipo , Desequilibrio de Ligamiento , Raíces de Plantas/genética , Polimorfismo de Nucleótido Simple , Simbiosis/genética
18.
Front Plant Sci ; 7: 1668, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27881987

RESUMEN

Puccinia triticina f. sp. tritici (Eriks.), the causal agent of leaf rust, causes substantial yield losses in wheat production. In wheat many major leaf rust resistance genes have been overcome by virulent races. In contrast, the prehaustorial resistance (phr) against wheat leaf rust detected in the diploid wheat Einkorn (Triticum monoccocum var. monococcum) accession PI272560 confers race-independent resistance against isolates virulent on accessions harboring resistance genes located on the A-genome of Triticum aestivum. Phr in PI272560 leads to abortion of fungal development during the formation of haustorial mother cells and to increased hydrogen peroxide concentration in comparison to the susceptible accession 36554 (Triticum boeoticum ssp. thaoudar var. reuteri). Increased peroxidase and endochitinase activity was detected in PI272560 within 6 h after inoculation (hai). Comparative transcriptome profiling using Massive Analysis of cDNA Ends (MACE) in infected and non-infected leaves detected 14220 differentially expressed tags in PI272560 and 15472 in accession 36554. Of these 2908 and 3004, respectively, could be assigned to Gene Ontology (GO) categories of which 463 were detected in both accessions and 311 were differentially expressed between the accessions. In accordance with the concept of non-host resistance in PI272560, genes with similarity to peroxidases, chitinases, ß-1,3-glucanases and other pathogenesis-related genes were up-regulated within the first 8 hai, whereas up-regulation of such genes was delayed in 36554. Moreover, a Phosphoribulokinase gene contributing to non-host resistance in rice against stripe rust was exclusively expressed in the resistant accession PI272560. Gene expression underpinned physiological and phenotypic observations at the site of infection and are in accordance with the concept of non-host resistance.

19.
Antimicrob Agents Chemother ; 51(10): 3672-6, 2007 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-17620378

RESUMEN

Azoles are extensively applied in agriculture and medicine, and a relationship between the development of azole resistance in agriculture and the development of azole resistance in clinical practice may exist. The maize pathogen Colletotrichum graminicola, causing cutaneous mycosis and keratitis, has been used to investigate the acquisition of resistance to an agricultural azole and the resulting cross-resistance to various medical antifungal agents. Azole-adapted strains were less sensitive to all azoles tested but showed increased sensitivity to caspofungin, amphotericin B, and nystatin. Viability staining and infection assays with excised human skin confirmed these data.


Asunto(s)
Antifúngicos/farmacología , Azoles/farmacología , Colletotrichum/efectos de los fármacos , Equinocandinas/farmacología , Hongos/efectos de los fármacos , Fungicidas Industriales/farmacología , Enfermedades de las Plantas/microbiología , Anfotericina B/farmacología , Caspofungina , Colletotrichum/crecimiento & desarrollo , Farmacorresistencia Fúngica , Sinergismo Farmacológico , Humanos , Técnicas In Vitro , Lipopéptidos , Pruebas de Sensibilidad Microbiana , Microscopía Fluorescente , Nistatina/farmacología , Piel/microbiología , Triazoles/farmacología
20.
Phytopathology ; 97(4): 523-31, 2007 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-18943293

RESUMEN

ABSTRACT The endophyte Piriformospora indica colonizes roots of a range of host plants and increases biomass production and resistance to fungal pathogens and, thus has been considered a biocontrol fungus. However, the field performance of this fungus has not yet been tested in temperate climates. Therefore, we evaluated the performance of this fungus in different substrata under greenhouse and practical field conditions. Roots of winter wheat were colonized efficiently, and biomass was particularly increased on poor substrata. In greenhouse experiments, symptom severity of a typical leaf (Blumeria graminis f. sp. tritici), stem base (Pseudocercosporella herpotrichoides), and root (Fusarium culmorum) pathogen was reduced significantly. However, in field experiments, symptoms caused by the leaf pathogen did not differ in Piriformospora indica-colonized compared with control plants. In the field, Pseudocercosporella herpotrichoides disease severity was significantly reduced in plants colonized by the endophyte. Increased numbers of sheath layers and hydrogen peroxide concentrations after B. graminis attack were detected in Piriformospora indica-colonized plants, suggesting that root colonization causes induction of systemic resistance or priming of the host plant. Although the endophyte is not well suited for growth at Central European temperature conditions, it remains to be shown whether P. indica is more suitable for tropical or subtropical farming.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA