Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Neuron ; 100(6): 1354-1368.e5, 2018 12 19.
Artículo en Inglés | MEDLINE | ID: mdl-30449657

RESUMEN

Corpus callosum malformations are associated with a broad range of neurodevelopmental diseases. We report that de novo mutations in MAST1 cause mega-corpus-callosum syndrome with cerebellar hypoplasia and cortical malformations (MCC-CH-CM) in the absence of megalencephaly. We show that MAST1 is a microtubule-associated protein that is predominantly expressed in post-mitotic neurons and is present in both dendritic and axonal compartments. We further show that Mast1 null animals are phenotypically normal, whereas the deletion of a single amino acid (L278del) recapitulates the distinct neurological phenotype observed in patients. In animals harboring Mast1 microdeletions, we find that the PI3K/AKT3/mTOR pathway is unperturbed, whereas Mast2 and Mast3 levels are diminished, indicative of a dominant-negative mode of action. Finally, we report that de novo MAST1 substitutions are present in patients with autism and microcephaly, raising the prospect that mutations in this gene give rise to a spectrum of neurodevelopmental diseases.


Asunto(s)
Agenesia del Cuerpo Calloso/genética , Cerebelo/anomalías , Regulación del Desarrollo de la Expresión Génica/genética , Malformaciones del Desarrollo Cortical/genética , Proteínas Asociadas a Microtúbulos/genética , Mutación/genética , Malformaciones del Sistema Nervioso/genética , Agenesia del Cuerpo Calloso/complicaciones , Agenesia del Cuerpo Calloso/diagnóstico por imagen , Agenesia del Cuerpo Calloso/patología , Animales , Animales Recién Nacidos , Apoptosis/genética , Encéfalo/metabolismo , Encéfalo/patología , Células Cultivadas , Cerebelo/diagnóstico por imagen , Niño , Discapacidades del Desarrollo/complicaciones , Discapacidades del Desarrollo/diagnóstico por imagen , Discapacidades del Desarrollo/genética , Modelos Animales de Enfermedad , Embrión de Mamíferos , Femenino , Humanos , Masculino , Malformaciones del Desarrollo Cortical/complicaciones , Malformaciones del Desarrollo Cortical/diagnóstico por imagen , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Proteínas Asociadas a Microtúbulos/deficiencia , Proteínas del Tejido Nervioso/metabolismo , Malformaciones del Sistema Nervioso/complicaciones , Malformaciones del Sistema Nervioso/diagnóstico por imagen , Factor de Transcripción PAX6/metabolismo
2.
Cell Rep ; 24(4): 1013-1024, 2018 07 24.
Artículo en Inglés | MEDLINE | ID: mdl-30044969

RESUMEN

Cerebellar granule neurons (CGNs) undergo programmed cell death during the first postnatal week of mouse development, coincident with sustained expression of the death receptor p75NTR. Although ablation of p75NTR does not affect CGN cell death, deletion of the downstream effector RIP2 significantly increases CGN apoptosis, resulting in reduced adult CGN number and impaired behaviors associated with cerebellar function. Remarkably, CGN death is restored to basal levels when p75NTR is deleted in RIP2-deficient mice. We find that RIP2 gates the signaling output of p75NTR by competing with TRAF6 for binding to the receptor intracellular domain. In CGNs lacking RIP2, more TRAF6 is associated with p75NTR, leading to increased JNK-dependent apoptosis. In agreement with this, pharmacological inhibition or genetic ablation of TRAF6 restores cell death levels in CGNs lacking RIP2. These results reveal an unexpected mechanism controlling CGN number and highlight how competitive interactions govern the logic of death receptor function.


Asunto(s)
Cerebelo/metabolismo , Neuronas/metabolismo , Proteína Serina-Treonina Quinasa 2 de Interacción con Receptor/metabolismo , Receptores de Factor de Crecimiento Nervioso/metabolismo , Factor 6 Asociado a Receptor de TNF/metabolismo , Animales , Supervivencia Celular , Cerebelo/citología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Neuronas/citología , Transfección
3.
Cell Rep ; 19(10): 1977-1986, 2017 06 06.
Artículo en Inglés | MEDLINE | ID: mdl-28591570

RESUMEN

The role of neurotrophic factors as endogenous survival proteins for brain neurons remains contentious. In the cerebellum, the signals controlling survival of molecular layer interneurons (MLIs) are unknown, and direct evidence for the requirement of a full complement of MLIs for normal cerebellar function and motor learning has been lacking. Here, we show that Purkinje cells (PCs), the target of MLIs, express the neurotrophic factor GDNF during MLI development and survival of MLIs depends on GDNF receptors GFRα1 and RET. Conditional mutant mice lacking either receptor lose a quarter of their MLIs, resulting in compromised synaptic inhibition of PCs, increased PC firing frequency, and abnormal acquisition of eyeblink conditioning and vestibulo-ocular reflex performance, but not overall motor activity or coordination. These results identify an endogenous survival mechanism for MLIs and reveal the unexpected vulnerability and selective requirement of MLIs in the control of cerebellar-dependent motor learning.


Asunto(s)
Receptores del Factor Neurotrófico Derivado de la Línea Celular Glial/metabolismo , Factor Neurotrófico Derivado de la Línea Celular Glial/metabolismo , Aprendizaje/fisiología , Actividad Motora/fisiología , Proteínas Proto-Oncogénicas c-ret/metabolismo , Células de Purkinje/metabolismo , Animales , Factor Neurotrófico Derivado de la Línea Celular Glial/genética , Receptores del Factor Neurotrófico Derivado de la Línea Celular Glial/genética , Ratones , Ratones Transgénicos , Proteínas Proto-Oncogénicas c-ret/genética , Células de Purkinje/citología
4.
Cell Rep ; 18(2): 367-379, 2017 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-28076782

RESUMEN

During embryonic development of the cerebellum, Purkinje cells (PCs) migrate away from the ventricular zone to form the PC plate. The mechanisms that regulate PC migration are incompletely understood. Here, we report that the neurotrophic receptor GFRα1 is transiently expressed in developing PCs and loss of GFRα1 delays PC migration. Neither GDNF nor RET, the canonical GFRα1 ligand and co-receptor, respectively, contribute to this process. Instead, we found that the neural cell adhesion molecule NCAM is co-expressed and directly interacts with GFRα1 in embryonic PCs. Genetic reduction of NCAM expression enhances wild-type PC migration and restores migration in Gfra1 mutants, indicating that NCAM restricts PC migration in the embryonic cerebellum. In vitro experiments indicated that GFRα1 can function both in cis and trans to counteract NCAM and promote PC migration. Collectively, our studies show that GFRα1 contributes to PC migration by limiting NCAM function.


Asunto(s)
Movimiento Celular , Receptores del Factor Neurotrófico Derivado de la Línea Celular Glial/metabolismo , Moléculas de Adhesión de Célula Nerviosa/metabolismo , Células de Purkinje/citología , Células de Purkinje/metabolismo , Animales , Cerebelo/citología , Embrión de Mamíferos/metabolismo , Femenino , Ratones Endogámicos C57BL , Ratones Transgénicos , Proteínas Proto-Oncogénicas c-ret/metabolismo , Células Madre/citología , Células Madre/metabolismo
5.
Mol Cell Neurosci ; 44(1): 15-29, 2010 May.
Artículo en Inglés | MEDLINE | ID: mdl-20153830

RESUMEN

During nervous system development, neural progenitors arise in proliferative zones, then exit the cell cycle and differentiate as they migrate away from these zones. The neuronal protein BM88/Cend1 has been implicated in coordination of cell cycle exit and differentiation of neuronal precursors. To further elucidate its function we generated Cend1 knock-out mice and analyzed their phenotype during postnatal cerebellar development. Cend1(-/-) mice showed no overt abnormalities in the gross anatomy of the cerebellum or other brain regions. However, detailed analysis revealed alterations in cerebellar layering arising from increased proliferation of granule cell precursors, delayed radial granule cell migration and impaired Purkinje cell differentiation. Accordingly, expression of Patched1, cyclin D1, reelin and brain-derived neurotrophic factor, which correlate with morphological development of the cerebellum, was altered in Cend1(-/-) mice. The observed anatomical and molecular alterations were accompanied by deficits in motor behaviour. Our results suggest that Cend1 is required for normal cerebellar development.


Asunto(s)
Cerebelo/anomalías , Cerebelo/metabolismo , Proteínas de la Membrana/genética , Trastornos del Movimiento/genética , Proteínas del Tejido Nervioso/genética , Animales , Biomarcadores/análisis , Biomarcadores/metabolismo , Diferenciación Celular/genética , Movimiento Celular/genética , Forma de la Célula/genética , Células Cultivadas , Cerebelo/patología , Dendritas/metabolismo , Dendritas/patología , Técnica del Anticuerpo Fluorescente , Regulación del Desarrollo de la Expresión Génica/fisiología , Citometría de Imagen , Ratones , Ratones Noqueados , Trastornos del Movimiento/patología , Trastornos del Movimiento/fisiopatología , Proteínas del Tejido Nervioso/análisis , Proteínas del Tejido Nervioso/metabolismo , Malformaciones del Sistema Nervioso/genética , Malformaciones del Sistema Nervioso/metabolismo , Malformaciones del Sistema Nervioso/fisiopatología , Neurogénesis/genética , Células de Purkinje/metabolismo , Células de Purkinje/patología , Proteína Reelina , Tinción con Nitrato de Plata
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...