Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Total Environ ; 912: 169245, 2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38072264

RESUMEN

Glacier retreat is rapidly transforming some watersheds, with ramifications for water supply, ecological succession, important species such as Pacific salmon (Oncorhynchus spp.), and cultural uses of landscapes. To advance a more holistic understanding of the evolution of proglacial landscapes, we integrate multiple lines of knowledge starting in the early 1900s with contemporary data from the Taaltsux̱éi (Tulsequah) Watershed in British Columbia, Canada. Our objectives were to: 1) synthesize recent historical geography and Indigenous Knowledge, including glacier dynamics, and hydrology; 2) describe the limnology of a proglacial lake; 3) quantify decadal-scale downstream physical floodplain change; and 4) characterize riverine physical, chemical, and biological differences relative to distance from the proglacial lake. Since 1982, the Tulsequah Glacier has receded 0.07 km/yr, exposing a cold, deep, and growing proglacial lake. The downstream floodplain is rapidly changing; satellite imagery analysis revealed a 14 % increase in vegetation from 2003 to 2017 and Indigenous Knowledge described increases in vegetation and wildlife habitat over the last century. Contemporary measurements of physical-chemical water properties differed across sites representing the upper and lower watershed, and mainstem and off-channel habitats. Catches of juvenile salmonids in the upper watershed (closer to the glacier) were mostly limited to warmer, clearer groundwater-fed channels, whereas in the lower watershed there were salmonids in both groundwater-fed and mainstem habitats. There was limited zooplankton taxa diversity from the proglacial lake and benthic macroinvertebrates in the river. Collectively, our synthesis suggests that the transformation of proglacial landscapes experiencing rapid ice loss can be influenced by interlinked abiotic processes of glacier retreat, lake formation, and altered hydrology, as well as corresponding biological processes such as beaver repopulation, wetland formation, and riparian vegetation growth. These factors, along with expected increases to proglacial lake productivity and salmon habitat suitability, are an important consideration for forward-looking watershed management of glacier-fed rivers.


Asunto(s)
Ecosistema , Oncorhynchus , Animales , Salmón , Humedales , Colombia Británica
2.
Science ; 382(6673): 887-889, 2023 11 24.
Artículo en Inglés | MEDLINE | ID: mdl-37995230

RESUMEN

Future ecological value of emerging habitats must be considered as climate change transforms the planet.


Asunto(s)
Migración Animal , Cambio Climático , Cubierta de Hielo , Minería , Salmón , Animales , Ecosistema , Canadá , Política Ambiental
3.
Sci Total Environ ; 896: 165247, 2023 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-37400021

RESUMEN

The frequency of dissolved oxygen depletion events (hypoxia) in coastal aquatic ecosystems has risen dramatically since the late 20th century, yet the causes and consequences of hypoxia for some culturally and economically important species remain poorly understood. In rivers, oxygen depletion can be caused by high densities of spawning Pacific salmon (Oncorhynchus spp.) consuming oxygen faster than can be replaced by reaeration. This process may be exacerbated when salmon densities are artificially inflated, such as when hatchery-origin salmon stray into rivers instead of returning to hatcheries. In Southeast Alaska, hatchery salmon production has increased rapidly since the 1970s, with over 553 million chum salmon (O. keta) and 64 million pink salmon (O. gorbuscha) released in 2021 alone. Straying is pervasive in streams with outlets <25 km from nearshore marine hatchery release sites. Using a previously ground-truthed mechanistic model of dissolved oxygen dynamics, we examined how water temperature and low-flow channel hydraulics contribute to hypoxia vulnerability. We then applied the model to predict hypoxia vulnerability for watersheds within 25 km of hatchery salmon release points, where straying salmon spawner densities are expected to be higher and promote dissolved oxygen depletion. Our model predicted that low-gradient stream reaches, regardless of water temperature, are the most prone to hypoxia due to low reaeration rates. Our spatial analysis determined that nearly 17,000 km of anadromous-accessible stream reaches are vulnerable to high densities of hatchery-origin salmon based on 2021 release sites. To our knowledge, this study is the first to map the spatial variation of hypoxia vulnerability in anadromous watersheds, identify habitat conditions most likely to promote hypoxia, and provide a repeatable analytical approach to identify hypoxia-prone stream reaches that can be updated as empirical data sets improve.


Asunto(s)
Oncorhynchus , Salmón , Animales , Ecosistema , Alaska , Ríos , Hipoxia , Oxígeno , Agua
4.
Sci Adv ; 8(26): eabn0929, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35776798

RESUMEN

Mining provides resources for people but can pose risks to ecosystems that support cultural keystone species. Our synthesis reviews relevant aspects of mining operations, describes the ecology of salmonid-bearing watersheds in northwestern North America, and compiles the impacts of metal and coal extraction on salmonids and their habitat. We conservatively estimate that this region encompasses nearly 4000 past producing mines, with present-day operations ranging from small placer sites to massive open-pit projects that annually mine more than 118 million metric tons of earth. Despite impact assessments that are intended to evaluate risk and inform mitigation, mines continue to harm salmonid-bearing watersheds via pathways such as toxic contaminants, stream channel burial, and flow regime alteration. To better maintain watershed processes that benefit salmonids, we highlight key windows during the mining governance life cycle for science to guide policy by more accurately accounting for stressor complexity, cumulative effects, and future environmental change.

5.
PeerJ ; 9: e12055, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34595065

RESUMEN

Downscaling coarse global and regional climate models allows researchers to access weather and climate data at finer temporal and spatial resolution, but there remains a need to compare these models with empirical data sources to assess model accuracy. Here, we validate a widely used software for generating North American downscaled climate data, ClimateNA, with a novel empirical data source, 20th century weather journals kept by Admiralty Island, Alaska homesteader, Allen Hasselborg. Using Hasselborg's journals, we calculated monthly precipitation and monthly mean of the maximum daily air temperature across the years 1926 to 1954 and compared these to ClimateNA data generated from the Hasselborg homestead location and adjacent areas. To demonstrate the utility and potential implications of this validation for other disciplines such as hydrology, we used an established regression equation to generate time series of 95% low duration flow estimates for the month of August using mean annual precipitation from ClimateNA predictions and Hasselborg data. Across 279 months, we found strong correlation between modeled and observed measurements of monthly precipitation (ρ = 0.74) and monthly mean of the maximum daily air temperature (ρ = 0.98). Monthly precipitation residuals (calculated as ClimateNA data - Hasselborg data) generally demonstrated heteroscedasticity around zero, but a negative trend in residual values starting during the last decade of observations may have been due to a shift to the cold-phase Pacific Decadal Oscillation. Air temperature residuals demonstrated a consistent but small positive bias, with ClimateNA tending to overestimate air temperature relative to Hasselborg's journals. The degree of correlation between weather patterns observed at the Hasselborg homestead site and ClimateNA data extracted from spatial grid cells across the region varied by wet and dry climate years. Monthly precipitation from both data sources tended to be more similar across a larger area during wet years (mean ρ across grid cells = 0.73) compared to dry years (mean ρ across grid cells = 0.65). The time series of annual 95% low duration flow estimates for the month of August generated using ClimateNA and Hasselborg data were moderately correlated (ρ = 0.55). Our analysis supports previous research in other regions which also found ClimateNA to be a robust source for past climate data estimates.

7.
Sci Total Environ ; 580: 710-718, 2017 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-27979620

RESUMEN

Assimilation of mercury (Hg) into food webs is directly influenced by ecological factors such as local habitat characteristics, species feeding behavior, and movement patterns. Total Hg concentrations ([THg]) in biota from Subarctic latitudes are driven both by broad spatial processes such as long-range atmospheric transport and more local influences such as biovectors and geology. Thus, even relatively pristine protected lands such as national parks are experiencing Hg accumulation. We analyzed [THg] and stable isotopes of carbon (δ13C) and nitrogen (δ15N) in 104 Dolly Varden (Salvelinus malma) collected from two rivers in southeastern Alaska, upstream and downstream of apparent anadromous migration barriers in watersheds with and without glacial coverage. To assess the potential magnitude of marine-derived THg returning to freshwater, we analyzed [THg] in ten adult pink salmon from each study system. There were no differences in Dolly Varden mean [THg] between sites after the data were standardized for fork length, but unadjusted [THg] varied relative to fish size and δ15N values. While previous studies generally show that [THg] increases with higher δ15N values, we found that Dolly Varden below migration barriers and foraging on salmon eggs had the highest δ15N values among all sampled individuals, but the lowest [THg]. Dolly Varden residing below anadromous barriers had δ13C values consistent with marine influence. Since salmon eggs typically have low [Hg], our results suggest that abundant salmon populations and the dietary subsidy they provide may reduce the annual exposure to [Hg] in egg-eating stream fishes such as Dolly Varden. In addition to identifying a suitable species for freshwater Hg monitoring in southeastern Alaska, our study more broadly implies that river characteristics, location within a river, fish size, and feeding ecology are important factors influencing Hg accumulation.


Asunto(s)
Cadena Alimentaria , Mercurio/análisis , Trucha , Contaminantes Químicos del Agua/análisis , Alaska , Animales , Ecología , Ríos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...