Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Biochem Biophys Res Commun ; 694: 149404, 2024 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-38147698

RESUMEN

At the molecular level, aging is often accompanied by dysfunction of stress-induced membrane-less organelles (MLOs) and changes in their physical state (or material properties). In this work, we analyzed the proteins included in the proteome of stress granules (SGs) and P-bodies for their tendency to transform the physical state of these MLOs. Particular attention was paid to the proteins whose gene expression changes during replicative aging. It was shown that the proteome of the studied MLOs consists of intrinsically disordered proteins, 30-40% of which are potentially capable of liquid-liquid phase separation (LLPS). Proteins whose gene expression changes during the transition of human cells to a senescent state make up about 20% of the studied proteomes. There is a statistically significant increase in the number of positively charged proteins in both datasets studied compared to the complete proteomes of these organelles. An increase in the relative content of DNA-, but not RNA-binding proteins, was also found in the SG dataset with senescence-related processes. Among SGs proteins potentially involved in senescent processes, there is an increase in the abundance of potentially amyloidogenic proteins compared to the whole proteome. Proteins common to SGs and P-bodies, potentially involved in processes associated with senescence, form clusters of interacting proteins. The largest cluster is represented by RNA-binding proteins involved in RNA processing and translation regulation. These data indicate that SG proteins, but not proteins of P-bodies, are more likely to transform the physical state of MLOs. Furthermore, these MLOs can participate in processes associated with aging in a coordinated manner.


Asunto(s)
Cuerpos de Procesamiento , Proteoma , Humanos , Proteoma/metabolismo , Gránulos de Estrés , Orgánulos/metabolismo , Biología Computacional , Senescencia Celular
2.
Int J Mol Sci ; 23(16)2022 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-36012368

RESUMEN

The NOS1AP gene encodes a cytosolic protein that binds to the signaling cascade component neuronal nitric oxide synthase (nNOS). It is associated with many different disorders, such as schizophrenia, post-traumatic stress disorder, autism, cardiovascular disorders, and breast cancer. The NOS1AP (also known as CAPON) protein mediates signaling within a complex which includes the NMDA receptor, PSD-95, and nNOS. This adapter protein is involved in neuronal nitric oxide (NO) synthesis regulation via its association with nNOS (NOS1). Our bioinformatics analysis revealed NOS1AP as an aggregation-prone protein, interacting with α-synuclein. Further investigation showed that NOS1AP forms detergent-resistant non-amyloid aggregates when overproduced. Overexpression of NOS1AP was found in rat models for nervous system injury as well as in schizophrenia patients. Thus, we can assume for the first time that the molecular mechanisms underlying these disorders include misfolding and aggregation of NOS1AP. We show that NOS1AP interacts with α-synuclein, allowing us to suggest that this protein may be implicated in the development of synucleinopathies and that its aggregation may explain the relationship between Parkinson's disease and schizophrenia.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales , Saccharomyces cerevisiae , alfa-Sinucleína , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Neuronas/metabolismo , Óxido Nítrico Sintasa de Tipo I , Ratas , Saccharomyces cerevisiae/metabolismo , Transducción de Señal/fisiología , Sinucleinopatías , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA