Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 13(1): 4243, 2023 03 14.
Artículo en Inglés | MEDLINE | ID: mdl-36918633

RESUMEN

Aromatic amines are a large group of chemical compounds that have attracted the attention of researchers due to their toxicity and carcinogenicity. This study aimed to develop an efficient method for sampling and analysis of aromatic amines (Aniline, N, N-dimethylaniline, 2-chloroaniline, and 3-chloroaniline) from the vapour phase (headspace) of urine samples. For the implementation of this plan, a needle trap device packed with the three-component adsorbent consisting of nano-Hydroxy Apatite (nHA), Zeolite (Ze), and Metal-Organic Framework (MOF) equipped with GC-FID was employed for the first phase. Examination of the prepared adsorbents was performed by FT-IR, PXRD, and FE-SEM techniques. The optimal value of considerable parameters such as time and temperature of extraction, salt content, and pH were established using the Response Surface Methodology-Central Composite Design (RMS-CCD) method. In this way, the optimal extraction of targeted analytes was accomplished in 41 min at 41 °C with NaCl content of 33.0% (w/v) and pH: 13.0, respectively. Also, the repeatability and reproducibility of the method were calculated to be in the range of 2.2-7.1% and 3.9-8.1%, respectively, which indicates the acceptable precision of the method. Also, the limit of detection (LOD) and limit of quantification (LOQ) were determined in the range of 0.3-32.0 ng.L-1 and 0.8-350.0 ng.L-1, respectively, which proves the high sensitivity of the proposed method. Furthermore, the recovery percent of the extracted analytes was concluded in the range of 97.0-99.0% after 6 and 30 days of the sampling and storage at 25 °C and 4 °C, respectively. Finally, the designed procedure was employed in the analysis of the above-mentioned aromatic amines in the real urine samples. The achieved results illustrate that the three-component absorbent system (nHA;Ze;MOF@NTD) can be introduced as an efficient, fast-response, sensitive, and versatile procedure for trace analysis of the different aromatic amine compounds in public and occupational health.


Asunto(s)
Compuestos de Anilina , Urinálisis , Compuestos de Anilina/orina , Urinálisis/métodos , Estructuras Metalorgánicas , Proyectos Piloto , Espectroscopía Infrarroja por Transformada de Fourier , Humanos
2.
ACS Omega ; 7(41): 36643-36652, 2022 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-36278040

RESUMEN

In this paper, an aluminum-based metal-organic framework (MIL-53(Al)-NH2) was synthesized and employed as a well-known and efficient dispersive microsolid-phase extraction (Dµ-SPE) sorbent for reliable determination of cyclophosphamide in urine samples by the high-performance liquid chromatography (HPLC) technique. The synthesized MIL-53(Al)-NH2 was characterized by FT-IR, PXRD, FE-SEM, and EDS for more details. Then, the effective parameters of the preconcentration and extraction of urinary cyclophosphamide including the amount of the solid sorbent, the pH of the sample, sample volume, extraction and desorption time, and the type and volume of elution solvent were thoroughly investigated and optimized. According to the results, a linear dynamic range of 0.14-120 µg mL-1 with a good correlation coefficient (R 2 = 0.998) and a limit of detection (LOD) of 0.05 µg mL-1 were obtained with intra- and interday relative standard deviations (n = 9) of 3.13 and 3.99% in optimized conditions, respectively. Furthermore, the absolute recovery of urinary cyclophosphamide at three concentrations (0.5, 50.0, and 100.0 µg mL-1) was 94.0%. Finally, the optimal condition of the developed method was successfully applied to the extraction and analysis of cyclophosphamide from the real urine samples with satisfactory recovery (94.0-97.0%) and acceptable precision (<4.1%). The findings proved that MIL-53(Al)-NH2 can be utilized as a suitable adsorbent for highly reliable extraction of cyclophosphamide in biological matrices.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA