Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Asunto principal
Intervalo de año de publicación
1.
Physiol Plant ; 175(6): e14085, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38148209

RESUMEN

Foliar N-fertilization (FNf) has emerged as a promising approach to synchronize plant nitrogen (N) demands and application timing, reducing the N losses to the environment associated with traditional soil-based fertilization methods. However, limited information exists regarding the effectiveness of FNf in sugarcane. This study aimed to optimize FNf in sugarcane by evaluating N-fertilizer recovery by the plant (NRP) and assessing potential toxicity effects. Four sugarcane genotypes were subjected to FNf using 15 N-urea at five nitrogen concentrations. NRP was assessed at five time points for roots, stalk, old leaves, 15 N-urea-fertilized leaves (15 NL), and unexpanded leaves (UEL). Leaf scorching, indicating FNf toxicity, was analyzed using morpho-anatomical and histochemical techniques. The results showed that FNf promoted high NRP, with an average recovery of 62.3%. Surprisingly, the redistribution of 15 N-urea did not follow the nitrogen uptake rate by sugarcane leaves, with an average of 41.3% of the total-NRP. The stalk emerged as the primary sink for 15 N-urea, followed by the UEL. Genotypes differed in the leaf scorching intensity, which increased with higher concentration of 15 N-urea. Genotypes also differed in the 15 N-urea uptake rate, down-regulated by the N content in the 15 NL. These findings emphasize that by carefully choosing the appropriate genotype and nitrogen concentration, FNf can significantly enhance N-fertilizer uptake, resulting in potential environmental and economic benefits.


Asunto(s)
Saccharum , Saccharum/genética , Fertilizantes/análisis , Suelo/química , Nitrógeno/química , Urea
2.
Biom J ; 65(7): e2200284, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37170704

RESUMEN

Comparative experiments involve the allocation of treatments to units, ideally by randomization. This necessarily confounds treatment information with unit information, which we distinguish from the other forms of information blending, in particular aliasing and marginality. We outline a factor-allocation paradigm for describing experimental designs with the aim of (i) exhibiting the confounding in a design, using analysis-of-variance-like tables, so as to understand and evaluate the design and (ii) formulating a linear mixed model based on the factor allocation that the design involves. The approach exhibits the dispersal of treatments information between units sources, allows designers a choice in the strategy that they adopt for including block-treatment interactions, clarifies differences between experiments, accommodates systematic allocation of factors, and provides a consolidated analysis of nonorthogonal designs. It provides insights into the process of designing experiments and issues that commonly arise with designs. The paradigm has pedagogical advantages and is implemented using the R package dae.

3.
Ciênc. rural (Online) ; 47(11): e20160982, Nov. 2017. tab, graf
Artículo en Inglés | LILACS | ID: biblio-1044903

RESUMEN

ABSTRACT: Remineralizers are comminuted rocks that are applied to soil, and their use as an agricultural amendment was regulated in Brazil in 2013. However, mechanisms of action of these materials must be better known to enable them to be best used in agricultural fields. Soil chemical attributes of an Oxisol were monitored after the application of a diabase remineralizer. The increase in exchangeable Na observed was associated with the dissolution of the border of the plagioclase crystals where this element is highly concentrated (albite). Therefore, it was inferred that the time since the application of the remineralizer (1 to 2 years depending on the treatment) was not sufficient to exhaust this crystal volume. Unfortunately, the presence of several sources of Ca-containing minerals in the remineralizer did not allow to infer if the calcic nuclei was dissolving. An increase in effective cation exchange capacity was observed without the concurrent increase in the pH of the soil. The two non-exclusive hypotheses proposed to explain this result were that an extra surface charge has originated on the surface of the newly precipitated oxidic phases and/or from the dissolution of the remineralizer grains. Rapid precipitation of amorphous solids (as measured by the increase in Alo and Feo) would also explain the lack of increase in exchangeable Fe and Al despite the large amount of Al2O3 (11.90%) and Fe2O3 (14.45%) in the remineralizer.


RESUMO: O uso de remineralizadores como insumo agrícola foi regularizado em 2013, mas seus mecanismos de ação precisam ser melhor conhecidos para viabilizar o manejo nos campos agrícolas. Atributos químicos de um Latossolo foram monitorados após remineralização com diabásio. O aumento de Na trocável foi atribuído à dissolução das bordas dos plagioclásios (albita) onde a concentração deste elemento é maior. Infelizmente, não é possível especular se o tempo decorrido desde a aplicação (um a dois anos, dependendo do tratamento) foi suficiente para solubilizar o núcleo cálcico (anortita) destes cristais, já que o remineralizador possui outros minerais fonte de Ca. Houve aumento da capacidade de troca catiônica efetiva sem aumento do pH. As hipóteses propostas para explicar este fenômeno são a precipitação de fases oxídicas amorfas e o aparecimento de cargas elétricas na superfície dos grãos do remineralizador durante sua dissolução. Apesar da concentração de Al2O3 do remineralizador (11,90%) e Fe2O3 (14,45%), não houve aumento destes elementos no complexo de troca, possivelmente por sua rápida precipitação em formas amorfas (Alo e Feo no solo).

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA