Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
1.
Eur J Pharmacol ; 970: 176475, 2024 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-38438061

RESUMEN

Sodium valproate (VPA), a histone deacetylase (HDAC) inhibitor, could be a promising candidate to treat acute myocardial infarction (AMI). In this study, AMI was induced in New Zealand White rabbits by occluding the left circumflex coronary artery for 1 h, followed by reperfusion. The animals were distributed into three experimental groups: the sham-operated group (SHAM), the AMI group and the AMI + VPA group (AMI treated with VPA 500 mg/kg/day). After 5 weeks, abdominal aorta was removed and used for isometric recording of tension in organ baths or protein expression by Western blot, and plasma for the determination of nitrate/nitrite (NOx) levels by colorimetric assay. Our results indicated that AMI induced a reduction of the endothelium-dependent response to acetylcholine without modifying the endothelium-independent response to sodium nitroprusside, leading to endothelial dysfunction. VPA treatment reversed AMI-induced endothelial dysfunction and even increased NO sensitivity in vascular smooth muscle. This response was consistent with an antioxidant effect of VPA, as it was able to reverse the superoxide dismutase 1 (SOD 1) down-regulation induced by AMI. Our experiments also ruled out that the VPA mechanism was related to eNOS, iNOS, sGC and arginase expression or changes in NOx plasma levels. Therefore, we conclude that VPA improves vasodilation by increasing NO bioavailability, likely due to its antioxidant effect. Since endothelial dysfunction was closely related to AMI, VPA treatment could increase aortic blood flow, making it a potential agent in reperfusion therapy that can prevent the vascular damage.


Asunto(s)
Infarto del Miocardio , Ácido Valproico , Conejos , Animales , Ácido Valproico/farmacología , Ácido Valproico/uso terapéutico , Antioxidantes , Infarto del Miocardio/metabolismo , Aorta/metabolismo , Endotelio/metabolismo , Endotelio Vascular/metabolismo
2.
Antioxidants (Basel) ; 12(11)2023 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-38001844

RESUMEN

The cerebellum is responsible for complex motor functions, like maintaining balance and stance, coordination of voluntary movements, motor learning, and cognitive tasks. During aging, most of these functions deteriorate, which results in falls and accidents. The aim of this work was to elucidate the effect of a standardized pomegranate extract during four months of supplementation in elderly mice to prevent frailty and improve the oxidative state. Male C57Bl/6J eighteen-month-old mice were evaluated for frailty using the "Valencia Score" at pre-supplementation and post-supplementation periods. We analyzed lipid peroxidation in the cerebellum and brain cortex and the glutathione redox status in peripheral blood. In addition, a set of aging-related genes in cerebellum and apoptosis biomarkers was measured via real-time polymerase chain reaction (RT-PCR). Our results showed that pomegranate extract supplementation improved the motor skills of C57Bl/6J aged mice in motor coordination, neuromuscular function, and monthly weight loss, but no changes in grip strength and endurance were found. Furthermore, pomegranate extract reversed the increase in malondialdehyde due to aging in the cerebellum and increased the reduced glutathione/oxidized glutathione (GSH/GSSG) ratio in the blood. Finally, aging and apoptosis biomarkers improved in aged mice supplemented with pomegranate extract in the cerebellum but not in the cerebral cortex.

3.
Int J Mol Sci ; 24(17)2023 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-37686342

RESUMEN

Activation of the aryl hydrocarbon receptor (AhR) has been shown to be important in physiological processes other than detoxification, including vascular homeostasis. Although AhR is highly expressed in the endothelium, its function has been poorly studied. This systematic review aims to summarise current knowledge on the AhR role in the endothelium and its cardiovascular implications. We focus on endogenous AhR agonists, such as some uremic toxins and other agonists unrelated to environmental pollutants, as well as studies using AhR knockout models. We conclude that AhR activation leads to vascular oxidative stress and endothelial dysfunction and that blocking AhR signalling could provide a new target for the treatment of vascular disorders such as cardiovascular complications in patients with chronic kidney disease or pulmonary arterial hypertension.


Asunto(s)
Contaminantes Ambientales , Enfermedades Vasculares , Humanos , Receptores de Hidrocarburo de Aril/genética , Hipertensión Pulmonar Primaria Familiar , Endotelio
4.
Int J Mol Sci ; 24(10)2023 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-37239868

RESUMEN

Insulin resistance is one of the main characteristics of metabolic syndrome (MetS) and the main cause of the development of type II diabetes. The high prevalence of this syndrome in recent decades has made it necessary to search for preventive and therapeutic agents, ideally of natural origin, with fewer side effects than conventional pharmacological treatments. Tea is widely known for its medicinal properties, including beneficial effects on weight management and insulin resistance. The aim of this study was to analyze whether a standardized extract of green and black tea (ADM® Complex Tea Extract (CTE)) prevents the development of insulin resistance in mice with MetS. For this purpose, C57BL6/J mice were fed for 20 weeks with a standard diet (Chow), a diet with 56% kcal from fat and sugar (HFHS) or an HFHS diet supplemented with 1.6% CTE. CTE supplementation reduced body weight gain, adiposity and circulating leptin levels. Likewise, CTE also exerted lipolytic and antiadipogenic effects in 3T3-L1 adipocyte cultures and in the C. elegans model. Regarding insulin resistance, CTE supplementation significantly increased plasma adiponectin concentrations and reduced the circulating levels of insulin and the HOMA-IR. Incubation of liver, gastrocnemius muscle and retroperitoneal adipose tissue explants with insulin increased the pAkt/Akt ratio in mice fed with Chow and HFHS + CTE but not in those fed only with HFHS. The greater activation of the PI3K/Akt pathway in response to insulin in mice supplemented with CTE was associated with a decrease in the expression of the proinflammatory markers Mcp-1, IL-6, IL-1ß or Tnf-α and with an overexpression of the antioxidant enzymes Sod-1, Gpx-3, Ho-1 and Gsr in these tissues. Moreover, in skeletal muscle, mice treated with CTE showed increased mRNA levels of the aryl hydrocarbon receptor (Ahr), Arnt and Nrf2, suggesting that the CTE's insulin-sensitizing effects could be the result of the activation of this pathway. In conclusion, supplementation with the standardized extract of green and black tea CTE reduces body weight gain, exerts lipolytic and antiadipogenic effects and reduces insulin resistance in mice with MetS through its anti-inflammatory and antioxidant effects.


Asunto(s)
Camellia sinensis , Diabetes Mellitus Tipo 2 , Resistencia a la Insulina , Síndrome Metabólico , Ratones , Animales , Síndrome Metabólico/tratamiento farmacológico , Síndrome Metabólico/complicaciones , , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Fosfatidilinositol 3-Quinasas , Caenorhabditis elegans , Proteínas Proto-Oncogénicas c-akt , Extractos Vegetales/farmacología , Extractos Vegetales/uso terapéutico , Obesidad/metabolismo , Aumento de Peso , Insulina , Antioxidantes/farmacología , Antioxidantes/uso terapéutico , Suplementos Dietéticos , Dieta Alta en Grasa/efectos adversos , Ratones Endogámicos C57BL
5.
Nature ; 615(7952): 507-516, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36890224

RESUMEN

Although chimeric antigen receptor (CAR) T cells have altered the treatment landscape for B cell malignancies, the risk of on-target, off-tumour toxicity has hampered their development for solid tumours because most target antigens are shared with normal cells1,2. Researchers have attempted to apply Boolean-logic gating to CAR T cells to prevent toxicity3-5; however, a truly safe and effective logic-gated CAR has remained elusive6. Here we describe an approach to CAR engineering in which we replace traditional CD3ζ domains with intracellular proximal T cell signalling molecules. We show that certain proximal signalling CARs, such as a ZAP-70 CAR, can activate T cells and eradicate tumours in vivo while bypassing upstream signalling proteins, including CD3ζ. The primary role of ZAP-70 is to phosphorylate LAT and SLP-76, which form a scaffold for signal propagation. We exploited the cooperative role of LAT and SLP-76 to engineer logic-gated intracellular network (LINK) CAR, a rapid and reversible Boolean-logic AND-gated CAR T cell platform that outperforms other systems in both efficacy and prevention of on-target, off-tumour toxicity. LINK CAR will expand the range of molecules that can be targeted with CAR T cells, and will enable these powerful therapeutic agents to be used for solid tumours and diverse diseases such as autoimmunity7 and fibrosis8. In addition, this work shows that the internal signalling machinery of cells can be repurposed into surface receptors, which could open new avenues for cellular engineering.


Asunto(s)
Ingeniería Celular , Inmunoterapia Adoptiva , Lógica , Neoplasias , Receptores de Antígenos de Linfocitos T , Receptores Quiméricos de Antígenos , Transducción de Señal , Linfocitos T , Humanos , Ingeniería Celular/métodos , Inmunoterapia Adoptiva/efectos adversos , Leucemia de Células B , Linfoma de Células B , Neoplasias/inmunología , Neoplasias/metabolismo , Neoplasias/terapia , Receptores de Antígenos de Linfocitos T/inmunología , Receptores de Antígenos de Linfocitos T/metabolismo , Receptores Quiméricos de Antígenos/inmunología , Receptores Quiméricos de Antígenos/metabolismo , Linfocitos T/inmunología , Linfocitos T/metabolismo
6.
Children (Basel) ; 10(3)2023 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-36980160

RESUMEN

This is a narrative review about the mechanisms involved in bacterial sepsis in preterm infants, which is an illness with a high incidence, morbidity, and mortality. The role of the innate immune response and its relationship with oxidative stress in the pathogenesis are described as well as their potential implementation as early biomarkers. Moreover, we address the impact that all the mechanisms triggered by sepsis have on the dysbiosis and the changes on neonatal microbiota.

7.
Int J Mol Sci ; 24(4)2023 Feb 11.
Artículo en Inglés | MEDLINE | ID: mdl-36835034

RESUMEN

The increase of vascular arginase activity during aging causes endothelial dysfunction. This enzyme competes with the endothelial nitric oxide synthase (eNOS) for L-arginine substrate. Our hypothesis is that glucose 6-P dehydrogenase (G6PD) overexpression could improve the endothelial function modulating the arginase pathway in aorta from mice. For this study, three groups of male mice were used: young wild type (WT) (6-9 months), old WT (21-22 months) and old G6PD-Tg (21-22 months) mice. Vascular reactivity results showed a reduced acetylcholine-dependent relaxation in the old WT but not old G6PD-Tg group. Endothelial dysfunction was reverted by nor-NOHA, an arginase inhibitor. Mice overexpressing G6PD underexpressed arginase II and also displayed a lower activity of this enzyme. Moreover, histological analyses demonstrated that age causes a thickness of aortic walls, but this did not occur in G6PD-Tg mice. We conclude that the overexpressing G6PD mouse is a model to improve vascular health via the arginase pathway.


Asunto(s)
Arginasa , Glucosafosfato Deshidrogenasa , Enfermedades Vasculares , Animales , Masculino , Ratones , Envejecimiento/genética , Envejecimiento/metabolismo , Aorta/metabolismo , Arginasa/metabolismo , Arginina/metabolismo , Endotelio Vascular/metabolismo , Endotelio Vascular/patología , Glucosa/metabolismo , Glucosafosfato Deshidrogenasa/genética , Glucosafosfato Deshidrogenasa/metabolismo , Óxido Nítrico/metabolismo , Óxido Nítrico Sintasa de Tipo III/metabolismo , Enfermedades Vasculares/metabolismo
8.
Cancers (Basel) ; 14(13)2022 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-35804987

RESUMEN

Lung cancer is a malignant disease with high mortality and poor prognosis, frequently diagnosed at advanced stages. Nowadays, immense progress in treatment has been achieved. However, the present scenario continues to be critical, and a full comprehension of tumor progression mechanisms is required, with exosomes being potentially relevant players. Exosomes are membranous vesicles that contain biological information, which can be transported cell-to-cell and modulate relevant processes in the hallmarks of cancer. The present research aims to characterize the exosomes' cargo and study their role in NSCLC to identify biomarkers. We analyzed exosomes secreted by primary cultures and cell lines, grown in monolayer and tumorsphere formations. Exosomal DNA content showed molecular alterations, whereas RNA high-throughput analysis resulted in a pattern of differentially expressed genes depending on histology. The most significant differences were found in XAGE1B, CABYR, NKX2-1, SEPP1, CAPRIN1, and RIOK3 genes when samples from two independent cohorts of resected NSCLC patients were analyzed. We identified and validated biomarkers for adenocarcinoma and squamous cell carcinoma. Our results could represent a relevant contribution concerning exosomes in clinical practice, allowing for the identification of biomarkers that provide information regarding tumor features, prognosis and clinical behavior of the disease.

9.
J Gerontol A Biol Sci Med Sci ; 77(10): 1931-1938, 2022 10 06.
Artículo en Inglés | MEDLINE | ID: mdl-35640160

RESUMEN

Centenarians exhibit extreme longevity and compression of morbidity and display a unique genetic signature. Centenarians' offspring seem to inherit centenarians' compression of morbidity, as measured by lower rates of age-related pathologies. We aimed to ascertain whether centenarians' offspring are less frail and whether they are endowed with a "centenarian genetic footprint" in a case-control study, matched 1:1 for gender, age ±5 years, and place of birth and residence. Cases must have a living parent aged 97 years or older, aged 65-80 years, community dwelling, not suffering from a terminal illness, or less than 6 months of life expectancy. Controls had to meet the same criteria as cases except for the age of death of their parents (not older than 89 years). Centenarians were individuals 97 years or older. Frailty phenotype was determined by Fried's criteria. We collected plasma and peripheral blood mononuclear cells from 63 centenarians, 88 centenarians' offspring, and 88 noncentenarians' offspring. miRNA expression and mRNA profiles were performed by the GeneChip miRNA 4.0 Array and GeneChip Clariom S Human Array, respectively. We found a lower incidence of frailty among centenarians' offspring when compared with their contemporaries' noncentenarians' offspring (p < .01). Both miRNA and mRNA expression patterns in centenarians' offspring were more like those of centenarians than those of noncentenarians' offspring (p < .01). In conclusion, centenarians' offspring are less frail than age-matched noncentenarians' offspring, and this may be explained by their unique genetic endowment.


Asunto(s)
Fragilidad , MicroARNs , Anciano , Anciano de 80 o más Años , Estudios de Casos y Controles , Centenarios , Anciano Frágil , Fragilidad/epidemiología , Fragilidad/genética , Humanos , Leucocitos Mononucleares , Longevidad/genética , MicroARNs/genética , ARN Mensajero , Transcriptoma
10.
J Integr Neurosci ; 21(1): 31, 2022 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-35164467

RESUMEN

Background: Ketogenic dietary therapies (KDT) are used as a treatment in childhood epilepsy. However, their mechanism has not yet been established. The main objective of this study was to determine the changes in the transcriptomic profile induced by KDT in children with epilepsy in order to shed light on its possible mechanisms. Methods: Eight children with refractory epilepsy were enrolled in the study. Peripheral blood mononuclear cells were obtained before and after the children were treated with KDT for a minimum of 6 months. RNA was extracted and mRNA and miRNA profiling were performed and analyzed. Results: Our intervention with KDT significantly reduced the seizure number in seven of the eight paediatric patients treated and caused important changes in their gene expression profile. Our study reveals modifications in the transcription of 4630 genes and 230 miRNAs. We found that the genes involved in the protection against epileptic crises were among those mainly changed. These genes collectively encode for ion channels, neurotransmitter receptors, and synapse structural proteins. Conclusions: Together our results explain the possible mechanisms of KDT and reinforce its clinical importance in the treatment of epilepsy.


Asunto(s)
Dieta Cetogénica , Epilepsia Refractaria/dietoterapia , Epilepsia Refractaria/metabolismo , MicroARNs/metabolismo , Transcriptoma , Niño , Preescolar , Femenino , Humanos , Lactante , Masculino , Evaluación de Resultado en la Atención de Salud
11.
Prostate Cancer Prostatic Dis ; 25(1): 119-122, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34007020

RESUMEN

BACKGROUND: Exercise is increasingly recognized as an effective strategy to improve cancer prevention and prognosis. Several biological mechanisms mediating these benefits have been proposed, but the role of epigenetics remains largely unknown. Since epigenetics is highly susceptible to lifestyle factors, we hypothesized that exercise could affect the epigenome landscape in cancer tissues. METHODS: Rats implanted with AT1 prostate tumors were randomized to either control or exercise training. microRNA expression, DNA methylation and histone acetylation were analyzed in the tumor tissue. RESULTS: MiR-27a-5p appeared to be differently expressed between sedentary and trained rats. Furthermore, exercise increased global DNA methylation and decreased DNA methyltransferases mRNA expression in the tumor tissue. Histone acetylation however remained unaltered. CONCLUSION: Overall, exercise might reverse some of the cancer-related epigenetic alterations in the prostate tumor tissue.


Asunto(s)
Histonas , Condicionamiento Físico Animal , Neoplasias de la Próstata , Animales , Masculino , Ratas , Metilación de ADN , Epigénesis Genética , Histonas/genética , Histonas/metabolismo , Neoplasias de la Próstata/genética , ARN Mensajero/genética
12.
Pediatr Res ; 91(3): 637-645, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-33767373

RESUMEN

BACKGROUND: Genome-wide expression profiles have been previously employed as clinical research diagnostic tools for newborn sepsis. We aimed to determine if transcriptomic profiles could discriminate between Gram-positive and Gram-negative bacterial sepsis in preterm infants. METHODS: Prospective, observational, double-cohort study was conducted in very low birth weight infants with clinical signs and culture-positive sepsis. Blood samples were collected when clinical signs became apparent. Total RNA was processed for transcriptomic analysis. Results were validated by both reverse-transcription polymerase chain reaction and a mathematical model. RESULTS: We included 25 septic preterm infants, 17 with Gram-positive and 8 with Gram-negative bacteria. The principal component analysis identified these two clusters of patients. We performed a predictive model based on 21 genes that showed an area under the receiver-operating characteristic curve of 1. Eight genes were overexpressed in Gram-positive septic infants: CD37, CSK, MAN2B2, MGAT1, MOB3A, MYO9B, SH2D3C, and TEP1. The most significantly overexpressed pathways were related to metabolic and immunomodulating responses that translated into an equilibrium between pro- and anti-inflammatory responses. CONCLUSIONS: The transcriptomic profile allowed identification of whether the causative agent was Gram-positive or Gram-negative bacteria. The overexpression of genes such as CD37 and CSK, which control cytokine production and cell survival, could explain the better clinical outcome in sepsis caused by Gram-positive bacteria. IMPACT: Transcriptomic profiles not only enable an early diagnosis of sepsis in very low birth weight infants but also discriminate between Gram-positive and Gram-negative bacteria as causative agents. The overexpression of some genes related to cytokine production and cell survival could explain the better clinical outcome in sepsis caused by Gram-positive bacteria, and could lead us to a future, targeted therapy.


Asunto(s)
Bacteriemia , Infecciones por Bacterias Gramnegativas , Sepsis , Antibacterianos/uso terapéutico , Bacteriemia/microbiología , Estudios de Cohortes , Citocinas/genética , Bacterias Gramnegativas/genética , Infecciones por Bacterias Gramnegativas/diagnóstico , Infecciones por Bacterias Gramnegativas/genética , Infecciones por Bacterias Gramnegativas/microbiología , Bacterias Grampositivas/genética , Humanos , Lactante , Recién Nacido , Recien Nacido Prematuro , Estudios Prospectivos , Sepsis/diagnóstico , Sepsis/genética , Transcriptoma
13.
J Cachexia Sarcopenia Muscle ; 12(6): 1879-1896, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34704386

RESUMEN

BACKGROUND: Frailty is a major age-associated syndrome leading to disability. Oxidative damage plays a significant role in the promotion of frailty. The cellular antioxidant system relies on reduced nicotinamide adenine dinucleotide phosphate (NADPH) that is highly dependent on glucose 6-P dehydrogenase (G6PD). The G6PD-overexpressing mouse (G6PD-Tg) is protected against metabolic stresses. Our aim was to examine whether this protection delays frailty. METHODS: Old wild-type (WT) and G6PD-Tg mice were evaluated longitudinally in terms of frailty. Indirect calorimetry, transcriptomic profile, and different skeletal muscle quality markers and muscle regenerative capacity were also investigated. RESULTS: The percentage of frail mice was significantly lower in the G6PD-Tg than in the WT genotype, especially in 26-month-old mice where 50% of the WT were frail vs. only 13% of the Tg ones (P < 0.001). Skeletal muscle transcriptomic analysis showed an up-regulation of respiratory chain and oxidative phosphorylation (P = 0.009) as well as glutathione metabolism (P = 0.035) pathways in the G6PD-Tg mice. Accordingly, the Tg animals exhibited an increase in reduced glutathione (34.5%, P < 0.01) and a decrease on its oxidized form (-69%, P < 0.05) and in lipid peroxidation (4-HNE: -20.5%, P < 0.05). The G6PD-Tg mice also showed reduced apoptosis (BAX/Bcl2: -25.5%, P < 0.05; and Bcl-xL: -20.5%, P < 0.05), lower levels of the intramuscular adipocyte marker FABP4 (-54.7%, P < 0.05), and increased markers of mitochondrial content (COX IV: 89.7%, P < 0.05; Grp75: 37.8%, P < 0.05) and mitochondrial OXPHOS complexes (CII: 81.25%, P < 0.01; CIII: 52.5%, P < 0.01; and CV: 37.2%, P < 0.05). Energy expenditure (-4.29%, P < 0.001) and the respiratory exchange ratio were lower (-13.4%, P < 0.0001) while the locomotor activity was higher (43.4%, P < 0.0001) in the 20-month-old Tg, indicating a major energetic advantage in these mice. Short-term exercise training in young C57BL76J mice induced a robust activation of G6PD in skeletal muscle (203.4%, P < 0.05), similar to that achieved in the G6PD-Tg mice (142.3%, P < 0.01). CONCLUSIONS: Glucose 6-P dehydrogenase deficiency can be an underestimated risk factor for several human pathologies and even frailty. By overexpressing G6PD, we provide the first molecular model of robustness. Because G6PD is regulated by pharmacological and physiological interventions like exercise, our results provide molecular bases for interventions that by increasing G6PD will delay the onset of frailty.


Asunto(s)
Fragilidad , Glucosafosfato Deshidrogenasa , Animales , Glucosa , Glucosa 1-Deshidrogenasa , Glucosafosfato Deshidrogenasa/genética , Ratones , Músculos
14.
J Cell Sci ; 134(21)2021 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-34714332

RESUMEN

Polarized epithelia define a topological inside and outside, and hence constitute a key evolutionary innovation that enabled the construction of complex multicellular animal life. Over time, this basic function has been elaborated upon to yield the complex architectures of many of the organs that make up the human body. The two processes necessary to yield a polarized epithelium, namely regulated adhesion between cells and the definition of the apicobasal (top-bottom) axis, have likewise undergone extensive evolutionary elaboration, resulting in multiple sophisticated protein complexes that contribute to both functions. Understanding how these components function in combination to yield the basic architecture of a polarized cell-cell junction remains a major challenge. In this Review, we introduce the main components of apicobasal polarity and cell-cell adhesion complexes, and outline what is known about their regulation and assembly in epithelia. In addition, we highlight studies that investigate the interdependence between these two networks. We conclude with an overview of strategies to address the largest and arguably most fundamental unresolved question in the field, namely how a polarized junction arises as the sum of its molecular parts.


Asunto(s)
Polaridad Celular , Uniones Intercelulares , Animales , Adhesión Celular , Células Epiteliales , Epitelio , Humanos
15.
Diagnostics (Basel) ; 11(8)2021 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-34441323

RESUMEN

BACKGROUND AND OBJECTIVES: Neonatal sepsis is a serious condition with a high rate of mortality and morbidity. Currently, the gold standard for sepsis diagnosis is a positive blood culture, which takes 48-72 h to yield results. We hypothesized that identifying differentially expressed miRNA pattern in neonates with late-onset Gram-positive sepsis would help with an earlier diagnosis and therapy. METHODS: This is a prospective observational study in newborn infants with late-onset Gram positive bacterial sepsis and non-septic controls. Complementary to blood culture, an aliquot of 0.5 mL of blood was used to determine small non-coding RNA expression profiling using the GeneChip miRNA 4.0 Array. RESULTS: A total of 11 very low birth-weight neonates with late-onset Gram-positive sepsis and 16 controls were analyzed. Further, 217 differentially expressed miRNAs were obtained between both groups. Subsequently, a combined analysis was performed with these miRNAs and 4297 differentially expressed genes. We identified 33 miRNAs that regulate our mRNAs, and the most relevant biological processes are associated with the immune system and the inflammatory response. CONCLUSIONS: The miRNA profiling in very low birth-weight neonates distinguishes late-onset Gram-positive sepsis versus control neonates.

16.
Animals (Basel) ; 10(10)2020 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-33092110

RESUMEN

Litter size is an essential trait in rabbit meat production but with low heritability. A selection experiment for ovulation rate has been performed for 10 generations to improve litter size in rabbits. The selected line increased two ova more than the control line but nevertheless a negative correlation was observed with prenatal survival. A transcriptomic study was performed, using microarrays, in ovarian tissue from females belonging to the selected line and the control line. Our results showed 1357 differential expressed genes and nineteen potential biomarkers associated with prenatal mortality, which could explain differences between litter size in rabbits. Cell death was the most relevant process.

17.
Sci Rep ; 10(1): 4771, 2020 03 16.
Artículo en Inglés | MEDLINE | ID: mdl-32179834

RESUMEN

Cutaneous melanoma is an aggressive neoplasm and is responsible for the majority of skin cancer deaths. Several miRNAs are involved in melanoma tumor progression. One of them is miR-205, the loss of which contributes to the development of melanoma metastasis. We evaluated whole-genome mRNA expression profiling associated with different miR-205 expression levels in melanoma cells. Differential expression analysis identified 243 differentially expressed transcripts including inositol polyphosphate 5'-phosphatase-like protein-1 (INPPL1) and BTB/POZ Domain-Containing Protein 3 (BTBD3). INPPL1 and BTBD3 were downregulated when melanoma cells expressed miR-205, indicating that these genes are potential miR-205 targets. Additionally, the target prediction algorithm TargetScan revealed that INPPL1 and BTBD3 genes had predicted target sites of miR-205 in their 3'UTRs and functional analysis demonstrated that these genes were directly linked to miR-205. Interestingly, our clinical data showed that INPPL1 was significantly associated with lymph node metastasis-free survival (LNMFS), distant metastasis-free survival (DMFS) and melanoma specific survival (MSS). This study supports INPPL1 as a miR-205 target gene and, therefore, that the involvement of miR-205 in the metastatic dissemination of malignant melanoma is, at least in part, via INPPL1.


Asunto(s)
Regulación Neoplásica de la Expresión Génica/genética , Metástasis Linfática/genética , Melanoma/genética , Melanoma/patología , MicroARNs/genética , MicroARNs/fisiología , Metástasis de la Neoplasia/genética , Proteínas del Tejido Nervioso/economía , Fosfatidilinositol-3,4,5-Trifosfato 5-Fosfatasas/genética , Neoplasias Cutáneas/genética , Neoplasias Cutáneas/patología , Transcriptoma/genética , Regiones no Traducidas 3'/genética , Supervivencia sin Enfermedad , Regulación hacia Abajo/genética , Perfilación de la Expresión Génica , Humanos , Melanoma/mortalidad , Proteínas del Tejido Nervioso/genética , Neoplasias Cutáneas/mortalidad , Células Tumorales Cultivadas
18.
Nutrients ; 12(2)2020 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-32075050

RESUMEN

BACKGROUND: We previously described a novel micronutrient blend that behaves like a putative calorie restriction mimetic. The aim of this paper was to analyze the beneficial effects of our micronutrient blend in mice and C. elegans, and compare them with calorie restriction. METHODS: Whole transcriptomic analysis was performed in the brain cortex, skeletal muscle and heart in three groups of mice: old controls (30 months), old + calorie restriction and old + novel micronutrient blend. Longevity and vitality were tested in C. elegans. RESULTS: The micronutrient blend elicited transcriptomic changes in a manner similar to those in the calorie-restricted group and different from those in the control group. Subgroup analysis revealed that nuclear hormone receptor, proteasome complex and angiotensinogen genes, all of which are known to be directly related to aging, were the most affected. Furthermore, a functional analysis in C. elegans was used. We found that feeding C. elegans the micronutrient blend increased longevity as well as vitality. CONCLUSIONS: We describe a micronutrient supplement that causes similar changes (transcriptomic and promoting longevity and vitality) as a calorie restriction in mice and C. elegans, respectively, but further studies are required to confirm these effects in humans.


Asunto(s)
Fenómenos Fisiológicos Nutricionales de los Animales , Caenorhabditis elegans/genética , Caenorhabditis elegans/fisiología , Restricción Calórica , Ingestión de Alimentos/genética , Ingestión de Alimentos/fisiología , Secuenciación del Exoma/métodos , Locomoción/genética , Longevidad/genética , Ratones/genética , Ratones/fisiología , Micronutrientes/administración & dosificación , Transcriptoma/genética , Animales , Humanos
19.
Int J Mol Sci ; 22(1)2020 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-33396457

RESUMEN

Migration of glioblastoma cells into surrounding tissue is one of the main features that makes this tumor incurable. We evaluated whole-genome miRNA expression profiling associated with different EGFR amplification patterns in 30 cases of primary glioblastoma. From the 64 miRNAs that showed differential expression between tumors with a high level of EGFR amplification and tumors without EGFR amplification, 40% were related with cell migration, being miR-200c the most differentially expressed between these two groups. We investigated the effect of miR-200c on ZEB1 expression and cell migration in an in vitro transfection model with a miR-200c mimic, a miR-200c inhibitor and siRNA targeting EGFR in three short-term cultures with different levels of EGFR amplification obtained from resected glioblastomas. The cell culture with the highest EGFR amplification level presented the lowest miR-200c expression and the status of EGFR modulated the effect of miR-200c on ZEB1 expression. Silencing EGFR led to miR-200c upregulation and ZEB1 downregulation in transfected cultures, except in the presence of high levels of EGFR. Likewise, miR-200c upregulation decreased ZEB1 expression and inhibited cell migration, especially when EGFR was not amplified. Our results suggest that modulating miR-200c may serve as a novel therapeutic approach for glioblastoma depending on EGFR status.


Asunto(s)
Biomarcadores de Tumor/metabolismo , Amplificación de Genes , Regulación Neoplásica de la Expresión Génica , Glioblastoma/patología , MicroARNs/genética , Homeobox 1 de Unión a la E-Box con Dedos de Zinc/metabolismo , Apoptosis , Biomarcadores de Tumor/genética , Movimiento Celular , Proliferación Celular , Receptores ErbB/genética , Glioblastoma/genética , Glioblastoma/metabolismo , Humanos , Mutación , Pronóstico , Células Tumorales Cultivadas , Homeobox 1 de Unión a la E-Box con Dedos de Zinc/genética
20.
Int J Mol Sci ; 22(1)2020 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-33396477

RESUMEN

The vast majority of the literature on the aryl hydrocarbon receptor is concerned with its functions in xenobiotic detoxification. However, in the course of evolution, this receptor had to have physiological (rather than toxicological) functions. Our aim was to review the aryl hydrocarbon receptor's role in the physiological functions involved in aging. This study was performed by searching the MEDLINE and Google Academic databases. A total of 34 articles were selected that focused specifically on the aryl hydrocarbon receptor and aging, the aryl hydrocarbon receptor and physiological functions, and the combination of both. This receptor's main physiological functions (mediated by the modulation of gene expression) were cell regeneration, the immune reaction, intestinal homeostasis, and cell proliferation. Furthermore, it was shown that the loss of this receptor led to premature aging. This process may be caused by the dysregulation of hematopoietic stem cells, loss of glucose and lipid homeostasis, increase in inflammation, and deterioration of the brain. We conclude that the aryl hydrocarbon receptor, apart from its well-established role in xenobiotic detoxication, plays an important role in physiological functions and in the aging process. Modulation of the signaling pathway of this receptor could be a therapeutic target of interest in aging.


Asunto(s)
Envejecimiento Prematuro/prevención & control , Envejecimiento/patología , Receptores de Hidrocarburo de Aril/metabolismo , Xenobióticos/metabolismo , Envejecimiento Prematuro/metabolismo , Animales , Humanos , Transducción de Señal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...