Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-33164844

RESUMEN

The use of carbon nanomaterials (CNMs) is growing in different technological fields, raising concern on their potential impacts on the environment. Given its diverse nanothenological applications, graphene oxide (GO) stands out among the most widely used CNMs. Its hydrophilic capacity enables it to remain stable in suspension in water allowing that GO can be accessible for accumulation by aquatic organisms through ingestion, filtration and superficial dermal contact when present in aquatic ecosystems. Considering that the effects induced to aquatic organisms may depend on environment characteristics, such as temperature, salinity, water pH as well as the presence/absence of sediment, the present study aimed to investigate the influence of sediment on the impacts caused by GO exposure. For this, oxidative stress parameters were measured in the clam Ruditapes philippinarum, exposed to different GO concentrations (0.01, 0.1 and 1 mg/L), in the presence and absence of sediment, for a 28-days experimental period. The results here presented showed that regardless the presence or absence of sediment, most of the biochemical parameters considered were altered when clams were exposed to the highest concentration. The present findings further revealed that in the presence of sediment, clams mostly invested in non-enzymatic defenses (such as reduced glutathione, GSH), while animals exposed to GO in the absence of sediment favored their enzymatic antioxidant defense capacity (catalase, CAT and superoxide dismutase, SOD). This study highlights the relevance of environmental variations as key factors influencing organisms' responses to pollutants.


Asunto(s)
Bivalvos/efectos de los fármacos , Sedimentos Geológicos/química , Grafito/toxicidad , Estrés Oxidativo/efectos de los fármacos , Contaminantes Químicos del Agua/toxicidad , Animales , Antioxidantes/metabolismo , Bivalvos/metabolismo , Catalasa/metabolismo , Relación Dosis-Respuesta a Droga , Ecosistema , Glutatión/metabolismo , Peroxidación de Lípido/efectos de los fármacos , Superóxido Dismutasa/metabolismo , Factores de Tiempo
2.
Biomed Res Int ; 2015: 104135, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25738149

RESUMEN

Carbon nanotubes (CNT) are promising materials for biomedical applications, especially in the field of neuroscience; therefore, it is essential to evaluate the neurotoxicity of these nanomaterials. The present work assessed the effects of single-walled CNT functionalized with polyethylene glycol (SWCNT-PEG) on the consolidation and retrieval of contextual fear memory in rats and on oxidative stress parameters in the hippocampus. SWCNT-PEG were dispersed in water at concentrations of 0.5, 1.0, and 2.1 mg/mL and infused into the rat hippocampus. The infusion was completed immediately after training and 30 min before testing of a contextual fear conditioning task, resulting in exposure times of 24 h and 30 min, respectively. The results showed that a short exposure to SWCNT-PEG impaired fear memory retrieval and caused lipid peroxidation in the hippocampus. This response was transient and overcome by the mobilization of antioxidant defenses at 24 h. These effects occurred at low and intermediate but not high concentration of SWCNT-PEG, suggesting that the observed biological response may be related to the concentration-dependent increase in particle size in SWCNT-PEG dispersions.


Asunto(s)
Miedo/efectos de los fármacos , Hipocampo/metabolismo , Memoria/efectos de los fármacos , Nanotubos de Carbono , Estrés Oxidativo/efectos de los fármacos , Polietilenglicoles , Animales , Peroxidación de Lípido/efectos de los fármacos , Masculino , Polietilenglicoles/química , Polietilenglicoles/farmacología , Ratas , Ratas Wistar
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA