Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
1.
J Pineal Res ; 75(4): e12908, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37650128

RESUMEN

During gestation, the developing fetus relies on precise maternal circadian signals for optimal growth and preparation for extrauterine life. These signals regulate the daily delivery of oxygen, nutrients, hormones, and other biophysical factors while synchronizing fetal rhythms with the external photoperiod. However, modern lifestyle factors such as light pollution and shift work can induce gestational chronodisruption, leading to the desynchronization of maternal and fetal circadian rhythms. Such disruptions have been associated with adverse effects on cardiovascular, neurodevelopmental, metabolic, and endocrine functions in the fetus, increasing the susceptibility to noncommunicable diseases (NCDs) in adult life. This aligns with the Developmental Origins of Health and Disease theory, suggesting that early-life exposures can significantly influence health outcomes later in life. The consequences of gestational chronodisruption also extend into adulthood. Environmental factors like diet and stress can exacerbate the adverse effects of these disruptions, underscoring the importance of maintaining a healthy circadian rhythm across the lifespan to prevent NCDs and mitigate the impact of gestational chronodisruption on aging. Research efforts are currently aimed at identifying potential interventions to prevent or mitigate the effects of gestational chronodisruption. Melatonin supplementation during pregnancy emerges as a promising intervention, although further investigation is required to fully understand the precise mechanisms involved and to develop effective strategies for promoting health and preventing NCDs in individuals affected by gestational chronodisruption.


Asunto(s)
Melatonina , Enfermedades no Transmisibles , Embarazo , Femenino , Humanos , Adulto , Melatonina/farmacología , Melatonina/uso terapéutico , Ritmo Circadiano/fisiología , Fotoperiodo
2.
Front Neurosci ; 16: 1039977, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36507347

RESUMEN

Introduction: Gestational chronodisruption impact maternal circadian rhythms, inhibiting the nocturnal increase of melatonin, a critical hormone that contributes to maternal changes adaptation, entrains circadian rhythms, and prepares the fetus for birth and successful health in adulthood. In rats, we know that gestational chronodisruption by maternal chronic photoperiod shifting (CPS) impaired maternal melatonin levels and resulted in long-term metabolic and cardiovascular effects in adult male offspring. Here, we investigated the consequences of CPS on mother and adult female offspring and explored the effects of melatonin maternal supplementation. Also, we tested whether maternal melatonin administration during gestational chronodisruption rescues maternal circadian rhythms, pregnancy outcomes, and transcriptional functions in adult female offspring. Methods: Female rats raised and maintained in photoperiod 12:12 light: dark were mated and separated into three groups: (a) Control photoperiod 12:12 (LD); (b) CPS photoperiod; and (c) CPS+Mel mothers supplemented with melatonin in the drinking water throughout gestation. In the mother, we evaluated maternal circadian rhythms by telemetry and pregnancy outcomes, in the long-term, we study adult female offspring by evaluating endocrine and inflammatory markers and the mRNA expression of functional genes involved in adrenal, cardiac, and renal function. Results: In the mothers, CPS disrupted circadian rhythms of locomotor activity, body temperature, and heart rate and increased gestational length by almost 12-h and birth weight by 12%, all of which were rescued by maternal melatonin administration. In the female offspring, we found blunted day/night differences in circulating levels of melatonin and corticosterone, abnormal patterns of pro-inflammatory cytokines Interleukin-1a (IL1a), Interleukin-6 (IL6), and Interleukin-10 (IL10); and differential expression in 18 out of 24 adrenal, cardiac, and renal mRNAs evaluated. Conclusion: Maternal melatonin contributed to maintaining the maternal circadian rhythms in mothers exposed to CPS, and the re-establishing the expression of 60% of the altered mRNAs to control levels in the female offspring. Although we did not analyze the effects on kidney, adrenal, and heart physiology, our results reinforce the idea that altered maternal circadian rhythms, resulting from exposure to light at night, should be a mechanism involved in the programming of Non-Communicable Diseases.

3.
Front Physiol ; 13: 864010, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35733986

RESUMEN

Neonatal pulmonary hypertension (NPHT) is produced by sustained pulmonary vasoconstriction and increased vascular remodeling. Soluble guanylyl cyclase (sGC) participates in signaling pathways that induce vascular vasodilation and reduce vascular remodeling. However, when sGC is oxidized and/or loses its heme group, it does not respond to nitric oxide (NO), losing its vasodilating effects. sGC protein expression and function is reduced in hypertensive neonatal lambs. Currently, NPHT is treated with NO inhalation therapy; however, new treatments are needed for improved outcomes. We used Cinaciguat (BAY-582667), which activates oxidized and/or without heme group sGC in pulmonary hypertensive lambs studied at 3,600 m. Our study included 6 Cinaciguat-treated (35 ug kg-1 day-1 x 7 days) and 6 Control neonates. We measured acute and chronic basal cardiovascular variables in pulmonary and systemic circulation, cardiovascular variables during a superimposed episode of acute hypoxia, remodeling of pulmonary arteries and changes in the right ventricle weight, vasoactive functions in small pulmonary arteries, and expression of NO-sGC-cGMP signaling pathway proteins involved in vasodilation. We observed a decrease in pulmonary arterial pressure and vascular resistance during the acute treatment. In contrast, the pulmonary pressure did not change in the chronic study due to increased cardiac output, resulting in lower pulmonary vascular resistance in the last 2 days of chronic study. The latter may have had a role in decreasing right ventricular hypertrophy, although the direct effect of Cinaciguat on the heart should also be considered. During acute hypoxia, the pulmonary vascular resistance remained low compared to the Control lambs. We observed a higher lung artery density, accompanied by reduced smooth muscle and adventitia layers in the pulmonary arteries. Additionally, vasodilator function was increased, and vasoconstrictor function was decreased, with modifications in the expression of proteins linked to pulmonary vasodilation, consistent with low pulmonary vascular resistance. In summary, Cinaciguat, an activator of sGC, induces cardiopulmonary modifications in chronically hypoxic and pulmonary hypertensive newborn lambs. Therefore, Cinaciguat is a potential therapeutic tool for reducing pulmonary vascular remodeling and/or right ventricular hypertrophy in pulmonary arterial hypertension syndrome.

4.
Front Endocrinol (Lausanne) ; 12: 678468, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34484111

RESUMEN

Compelling evidence in rats support the idea that gestational chronodisruption induces major changes in maternal circadian rhythms and fetal development and that these changes impact adult life at many physiological levels. Using a model of chronic photoperiod shifting throughout gestation (CPS), in which pregnant female rats (Sprague-Dawley strain; n = 16 per group) were exposed to lighting schedule manipulation every 3-4 days reversing the photoperiod completely or light/dark photoperiod (12/12; LD), we explored in the adult rat male offspring body weight gain, glucose homeostasis, adipose tissue content, adipose tissue response to norepinephrine (NE), and adipose tissue proteomic in the basal condition with standard diet (SD) and in response to high-fat diet (HFD). In adult CPS male (100-200 days old; n = 8 per group), we found increasing body weight, under SD and adiposity. Also, we found an increased response to intraperitoneal glucose (IGTT). After 12 weeks of HFD, white adipose tissue depots in CPS offspring were increased further, and higher IGTT and lower intraperitoneal insulin tolerance response were found, despite the lack of changes in food intake. In in vitro experiments, we observed that adipose tissue (WAT and BAT) glycerol response to NE from CPS offspring was decreased, and it was completely abolished by HFD. At the proteomic level, in CPS adipose tissue, 275 proteins displayed differential expression, compared with LD animals fed with a standard diet. Interestingly, CPS offspring and LD fed with HFD showed 20 proteins in common (2 upregulated and 18 downregulated). Based on these common proteins, the IPA analysis found that two functional pathways were significantly altered by CPS: network 1 (AKT/ERK) and network 2 (TNF/IL4; data are available via ProteomeXchange with identifier PXD026315). The present data show that gestational chronodisruption induced deleterious effects in adipose tissue recruitment and function, supporting the idea that adipose tissue function was programmed in utero by gestational chronodisruption, inducing deficient metabolic responses that persist into adulthood.


Asunto(s)
Tejido Adiposo/metabolismo , Ritmo Circadiano/fisiología , Glucosa/metabolismo , Fotoperiodo , Efectos Tardíos de la Exposición Prenatal/metabolismo , Animales , Trastornos Cronobiológicos/metabolismo , Femenino , Homeostasis/fisiología , Masculino , Embarazo , Proteómica , Ratas , Ratas Sprague-Dawley
5.
Artículo en Inglés | MEDLINE | ID: mdl-31354619

RESUMEN

Neonatal lambs, as other neonates, have physiologically a very low plasma melatonin concentration throughout 24 h. Previously, we found that melatonin given to neonates daily for 5 days decreased heart weight and changed plasma cortisol and gene expression in the adrenal and heart. Whether these changes could compromise the responses to life challenges is unknown. Therefore, firstly, we studied acute effects of melatonin on the defense mechanisms to acute hypoxia in the neonate. Eleven lambs, 2 weeks old, were instrumented and subjected to an episode of acute isocapnic hypoxia, consisting of four 30 min periods: normoxia (room air), normoxia after an i.v. bolus of melatonin (0.27 mg kg-1, n = 6) or vehicle (ethanol 1:10 NaCl 0.9%, n = 5), hypoxia (PaO2: 30 ± 2 mmHg), and recovery (room air). Mean pulmonary and systemic blood pressures, heart rate, and cardiac output were measured, and systemic and pulmonary vascular resistance and stroke volume were calculated. Blood samples were taken every 30 min to measure plasma norepinephrine, cortisol, glucose, triglycerides, and redox markers (8-isoprostane and FRAP). Melatonin blunted the increase of pulmonary vascular resistance triggered by hypoxia, markedly exacerbated the heart rate response, decreased heart stroke volume, and lessened the magnitude of the increase of plasmatic norepinephrine and cortisol levels induced by hypoxia. No changes were observed in pulmonary blood pressure, systemic blood pressures and resistance, cardiac output, glucose, triglyceride plasma concentrations, or redox markers. Melatonin had no effect on cardiovascular, endocrine, or metabolic variables, under normoxia. Secondly, we examined whether acute melatonin administration under normoxia could have an effect in gene expression on the adrenal, lung, and heart. Lambs received a bolus of vehicle or melatonin and were euthanized 30 min later to collect tissues. We found that melatonin affected expression of the immediate early genes egr1 in adrenal, ctgf in lung, and nr3c1, the glucocorticoid receptor, in adrenal and heart. We speculate that these early gene responses may contribute to the observed alterations of the newborn defense mechanisms to hypoxia. This could be particularly important since the use of melatonin is proposed for several diseases in the neonatal period in humans.

6.
7.
Biomed Res Int ; 2018: 9183053, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30186871

RESUMEN

In the capuchin monkey (Cebus apella), a new-world nonhuman primate, maternal exposure to constant light during last third of gestation induces precocious maturation of the fetal adrenal and increased plasma cortisol in the newborn. Here, we further explored the effects of this challenge on the developmental programming of adrenal function in newborn and infant capuchin monkeys. We measured (i) plasma dehydroepiandrosterone sulphate (DHAS) and cortisol response to ACTH in infants with suppressed endogenous ACTH, (ii) plasma DHAS and cortisol response to ACTH in vitro, and (iii) adrenal weight and expression level of key factors in steroid synthesis (StAR and 3ß-HSD). In one-month-old infants from mothers subjected to constant light, plasma levels of cortisol and cortisol response to ACTH were twofold higher, whereas plasma levels of DHAS and DHAS response to ACTH were markedly reduced, compared to control conditions. At 10 months of age, DHAS levels were still lower but closer to control animals, whereas cortisol response to ACTH was similar in both experimental groups. A compensatory response was detected at the adrenal level, consisting of a 30% increase in adrenal weight and about 50% reduction of both StAR and 3ß-HSD mRNA and protein expression and the magnitude of DHAS and cortisol response to ACTH in vitro. Hence, at birth and at 10 months of age, there were differential effects in DHAS, cortisol production, and their response to ACTH. However, by 10 months of age, these subsided, leading to a normal cortisol response to ACTH. These compensatory mechanisms may help to overcome the adrenal alterations induced during pregnancy to restore normal cortisol concentrations in the growing infant.


Asunto(s)
Glándulas Suprarrenales/fisiopatología , Cebus/embriología , Exposición Materna , Hormona Adrenocorticotrópica , Animales , Cebus/crecimiento & desarrollo , Femenino , Edad Gestacional , Hidrocortisona/metabolismo , Luz , Embarazo
9.
Front Physiol ; 9: 798, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30008674

RESUMEN

High altitude (HA) exposure may affect human health and performance by involving the body timing system. Daily variations of melatonin may disrupt by HA exposure, thereby possibly affecting its relations with a metabolic parameter like the respiratory quotient (RQ). Sea level (SL) volunteers (7 women and 7 men, 21.0 ± 2.04 y) were examined for daily changes in salivary melatonin concentration (SMC). Sampling was successively done at SL (Antofagasta, Chile) and, on acute HA exposure, at nearby Caspana (3,270 m asl). Saliva was collected in special vials (Salimetrics Oral Swab, United Kingdom) at sunny noon (SMCD) and in the absence of blue light at midnight (SMCN). The samples were obtained after rinsing the mouth with tap water and were analyzed for SMC by immunoassay (ELISA kit; IBL International, Germany). RQ measurements (n = 12) were realized with a portable breath to breath metabolic system (OxiconTM Mobile, Germany), between 8:00 PM and 10:00 PM, once at either location. At SL, SMCD, and SMCN values (mean ± SD) were, respectively, 2.14 ± 1.30 and 11.6 ± 13.9 pg/ml (p < 0.05). Corresponding values at HA were 8.83 ± 12.6 and 13.7 ± 16.7 pg/ml (n.s.). RQ was 0.78 ± 0.07 and 0.89 ± 0.08, respectively, at SL and HA (p < 0.05). Differences between SMCN and SMCD (SMCN-SMCD) strongly correlate with the corresponding RQ values at SL (r = -0.74) and less tight at HA (r = -0.37). Similarly, mean daily SMC values (SMC) tightly correlate with RQ at SL (r = -0.79) and weaker at HA (r = -0.31). SMCN-SMCD, as well as, SMC values at SL, on the other hand, respectively, correlate with the corresponding values at HA (r = 0.71 and r = 0.85). Acute exposure to HA appears to loosen relations of SMC with RQ. A personal profile in daily SMC variation, on the other hand, tends to be conserved at HA.

10.
Endocrinology ; 158(9): 2895-2905, 2017 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-28911179

RESUMEN

Neonatal lambs, as with human and other neonates, have low arrhythmic endogenous levels of melatonin for several weeks until they start their own pineal rhythm of melatonin production at approximately 2 weeks of life. During pregnancy, daily rhythmic transfer of maternal melatonin to the fetus has important physiological roles in sheep, nonhuman primates, and rats. This melatonin rhythm provides a circadian signal and also participates in adjusting the physiology of several organs in preparation for extrauterine life. We propose that the ensuing absence of a melatonin rhythm plays a role in neonatal adaptation. To test this hypothesis, we studied the effects of imposing a high-amplitude melatonin rhythm in the newborn lamb on (1) clock time-related changes in cortisol and plasma variables and (2) clock time-related changes of gene expression of clock genes and selected functional genes in the adrenal gland and heart. We treated newborn lambs with a daily oral dose of melatonin (0.25 mg/kg) from birth to 5 days of age, recreating a high-amplitude melatonin rhythm. This treatment suppressed clock time-related changes of plasma adrenocorticotropic hormone, cortisol, clock gene expression, and functional genes in the newborn adrenal gland. In the heart, it decreased heart/body weight ratio, increased expression of Anp and Bnp, and resulted in different heart gene expression from control newborns. The interference of this postnatal melatonin treatment with the normal postnatal pattern of adrenocortical function and heart development support a physiological role for the window of flat postnatal melatonin levels during the neonatal transition.


Asunto(s)
Glándulas Suprarrenales/metabolismo , Ritmo Circadiano/fisiología , Melatonina/sangre , Miocardio/metabolismo , Glándulas Suprarrenales/efectos de los fármacos , Animales , Animales Recién Nacidos , Factor Natriurético Atrial/genética , Factor Natriurético Atrial/metabolismo , Femenino , Expresión Génica/efectos de los fármacos , Corazón/efectos de los fármacos , Corazón/fisiología , Masculino , Melatonina/farmacología , Melatonina/fisiología , Péptido Natriurético Encefálico/genética , Proteínas Circadianas Period/genética , Ovinos
11.
Endocrinology ; 157(12): 4654-4668, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-27802074

RESUMEN

Chronic exposure to light at night, as in shift work, alters biological clocks (chronodisruption), negatively impacting pregnancy outcome in humans. Actually the interaction of maternal and fetal circadian systems could be a key factor determining a fitting health in adults. We propose that chronic photoperiod shift (CPS) during pregnancy alter maternal circadian rhythms and impair circadian physiology in the adult offspring, increasing health risks. Pregnant rats were exposed to normal photoperiod (12 h light, 12 h dark) or to CPS until 85% of gestation. The effects of gestational CPS were evaluated on the mother and adult offspring. In the mother we measured rhythms of heart rate, body temperature, and activity through gestation and daily rhythms of plasma variables (melatonin, corticosterone, aldosterone, and markers of renal function) at 18 days of gestation. In adult offspring, we measured rhythms of the clock gene expression in the suprachiasmatic nucleus (SCN), locomotor activity, body temperature, heart rate, blood pressure, plasma variables, glucose tolerance, and corticosterone response to ACTH. CPS altered all maternal circadian rhythms, lengthened gestation, and increased newborn weight. The adult CPS offspring presented normal rhythms of clock gene expression in the SCN, locomotor activity, and body temperature. However, the daily rhythm of plasma melatonin was absent, and corticosterone, aldosterone, renal markers, blood pressure, and heart rate rhythms were altered. Moreover, CPS offspring presented decreased glucose tolerance and an abnormal corticosterone response to ACTH. Altogether these data show that gestational CPS induced long-term effects on the offspring circadian system, wherein a normal SCN coexists with altered endocrine, cardiovascular, and metabolic function.


Asunto(s)
Ritmo Circadiano/fisiología , Frecuencia Cardíaca/fisiología , Actividad Motora/fisiología , Fotoperiodo , Efectos Tardíos de la Exposición Prenatal/fisiopatología , Aldosterona/sangre , Animales , Presión Sanguínea/fisiología , Temperatura Corporal/fisiología , Proteínas CLOCK/genética , Proteínas CLOCK/metabolismo , Enfermedad Crónica , Corticosterona/sangre , Femenino , Intolerancia a la Glucosa/metabolismo , Intolerancia a la Glucosa/fisiopatología , Masculino , Melatonina/sangre , Embarazo , Ratas , Factores Sexuales , Núcleo Supraquiasmático/metabolismo
12.
Am J Obstet Gynecol ; 215(2): 245.e1-7, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-26902986

RESUMEN

BACKGROUND: Intrauterine growth restriction is a condition in which the fetus has a birthweight and/or length <10th percentile for the gestational age. Intrauterine growth restriction can be associated with various causes, among which is low uteroplacental perfusion and chronic hypoxia during gestation. Often, intrauterine growth-restricted fetuses have increased oxidative stress; therefore, agents that decrease oxidative stress and increase utero, placental, and umbilical perfusion have been proposed as a beneficial therapeutic strategy. In this scenario, melatonin acts as an umbilical vasodilator and a potent antioxidant that has not been evaluated in pregnancies under chronic hypoxia that induce fetal growth restriction. However, this neurohormone has been proposed as a pharmacologic therapy for complicated pregnancies. OBJECTIVES: The aim of this study was to determine the effects of prenatal administration of melatonin during the last trimester of pregnancy on the biometry of the growth-restricted lambs because of developmental hypoxia. Further, we aimed to determine melatonin and cortisol levels and oxidative stress markers in plasma of pregnant ewes during the treatment. STUDY DESIGN: High-altitude pregnant sheep received either vehicle (n = 5; 5 mL 1.4% ethanol) or melatonin (n = 7; 10 mg/kg(-1)day(-1) in 5 mL 1.4% ethanol) daily during the last one-third of gestation. Maternal plasma levels of melatonin, cortisol, antioxidant capacity, and oxidative stress were determined along treatment. At birth, neonates were examined, weighed, and measured (biparietal diameter, abdominal diameter, and crown-rump length). RESULTS: Antenatal treatment with melatonin markedly decreased neonatal biometry and weight at birth. Additionally, melatonin treatment increased the length of gestation by 7.5% and shifted the time of delivery. Furthermore, the prenatal treatment doubled plasma levels of melatonin and cortisol and significantly improved the antioxidant capacity of the pregnant ewes. CONCLUSIONS: Our findings indicate that antenatal melatonin induces further intrauterine growth restriction but improves the maternal plasma antioxidant capacity. Additional studies should address the efficiency and safety of antenatal melatonin before clinical attempts on humans.


Asunto(s)
Peso al Nacer/efectos de los fármacos , Desarrollo Fetal/efectos de los fármacos , Retardo del Crecimiento Fetal/tratamiento farmacológico , Melatonina/efectos adversos , Estrés Oxidativo/efectos de los fármacos , Animales , Biomarcadores/sangre , Femenino , Retardo del Crecimiento Fetal/inducido químicamente , Edad Gestacional , Hidrocortisona/sangre , Melatonina/sangre , Melatonina/farmacología , Melatonina/uso terapéutico , Estrés Oxidativo/fisiología , Embarazo , Resultado del Embarazo , Ovinos
13.
J Pineal Res ; 59(1): 80-90, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25908097

RESUMEN

Experimental studies in animal models supporting protective effects on the fetus of melatonin in adverse pregnancy have prompted clinical trials in human pregnancy complicated by fetal growth restriction. However, the effects of melatonin on the fetal defense to acute hypoxia, such as that which may occur during labor, remain unknown. This translational study tested the hypothesis, in vivo, that melatonin modulates the fetal cardiometabolic defense responses to acute hypoxia in chronically instrumented late gestation fetal sheep via alterations in fetal nitric oxide (NO) bioavailability. Under anesthesia, 6 fetal sheep at 0.85 gestation were instrumented with vascular catheters and a Transonic flow probe around a femoral artery. Five days later, fetuses were exposed to acute hypoxia with or without melatonin treatment. Fetal blood was taken to determine blood gas and metabolic status and plasma catecholamine concentrations. Hypoxia during melatonin treatment was repeated during in vivo NO blockade with the NO clamp. This technique permits blockade of de novo synthesis of NO while compensating for the tonic production of the gas, thereby maintaining basal cardiovascular function. Melatonin suppressed the redistribution of blood flow away from peripheral circulations and the glycemic and plasma catecholamine responses to acute hypoxia. These are important components of the fetal brain sparing response to acute hypoxia. The effects of melatonin involved NO-dependent mechanisms as the responses were reverted by fetal treatment with the NO clamp. Melatonin modulates the in vivo fetal cardiometabolic responses to acute hypoxia by increasing NO bioavailability.


Asunto(s)
Hipoxia/tratamiento farmacológico , Melatonina/uso terapéutico , Animales , Catecolaminas/metabolismo , Femenino , Feto/efectos de los fármacos , Feto/metabolismo , Óxido Nítrico/metabolismo , Estrés Oxidativo/efectos de los fármacos , Embarazo , Ovinos
14.
J Pineal Res ; 58(3): 362-73, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25736256

RESUMEN

Pulmonary hypertension of the newborn (PHN) constitutes a critical condition with severe cardiovascular and neurological consequences. One of its main causes is hypoxia during gestation, and thus, it is a public health concern in populations living above 2500 m. Although some mechanisms are recognized, the pathophysiological facts that lead to PHN are not fully understood, which explains the lack of an effective treatment. Oxidative stress is one of the proposed mechanisms inducing pulmonary vascular dysfunction and PHN. Therefore, we assessed whether melatonin, a potent antioxidant, improves pulmonary vascular function. Twelve newborn sheep were gestated, born, and raised at 3600 meters. At 3 days old, lambs were catheterized and daily cardiovascular measurements were recorded. Lambs were divided into two groups, one received daily vehicle as control and another received daily melatonin (1 mg/kg/d), for 8 days. At 11 days old, lung tissue and small pulmonary arteries (SPA) were collected. Melatonin decreased pulmonary pressure and resistance for the first 3 days of treatment. Further, melatonin significantly improved the vasodilator function of SPA, enhancing the endothelial- and muscular-dependent pathways. This was associated with an enhanced nitric oxide-dependent and nitric oxide independent vasodilator components and with increased nitric oxide bioavailability in lung tissue. Further, melatonin reduced the pulmonary oxidative stress markers and increased enzymatic and nonenzymatic antioxidant capacity. Finally, these effects were associated with an increase of lumen diameter and a mild decrease in the wall of the pulmonary arteries. These outcomes support the use of melatonin as an adjuvant in the treatment for PHN.


Asunto(s)
Antioxidantes/farmacología , Hipertensión Pulmonar/metabolismo , Pulmón/efectos de los fármacos , Melatonina/farmacología , Estrés Oxidativo/efectos de los fármacos , Arteria Pulmonar/efectos de los fármacos , Animales , Animales Recién Nacidos , Pulmón/irrigación sanguínea , Arteria Pulmonar/fisiología , Ovinos
15.
J Pineal Res ; 57(1): 33-42, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24811332

RESUMEN

Chronic hypoxia during gestation and delivery results in oxidative stress and cerebrovascular dysfunction in the neonate. We assessed whether melatonin, a potent antioxidant and potential vasodilator, improves the cerebral vascular function in chronically hypoxic neonatal lambs gestated and born in the highlands (3600 m). Six lambs received melatonin (1 mg/kg per day oral) and six received vehicle, once a day for 8 days. During treatment, biometry and hemodynamic variables were recorded. After treatment, lambs were submitted to a graded FiO2 protocol to assess cardiovascular responses to oxygenation changes. At 12 days old, middle cerebral arteries (MCA) were collected for vascular reactivity, morphostructural, and immunostaining evaluation. Melatonin increased fractional growth at the beginning and improved carotid blood flow at all arterial PO2 levels by the end of the treatment (P < 0.05). Further, melatonin treatment improved vascular responses to potassium, serotonin, methacholine, and melatonin itself (P < 0.05). In addition, melatonin enhanced the endothelial response via nitric oxide-independent mechanisms in isolated arteries (162 ± 26 versus 266 ± 34 AUC, P < 0.05). Finally, nitrotyrosine staining as an oxidative stress marker decreased in the MCA media layer of melatonin-treated animals (0.01357 ± 0.00089 versus 0.00837 ± 0.00164 pixels/µm2 , P < 0.05). All the melatonin-induced changes were associated with no systemic cardiovascular alterations in vivo. In conclusion, oral treatment with melatonin modulates cerebral vascular function, resulting in a better cerebral perfusion and reduced oxidative stress in the neonatal period in chronically hypoxic lambs. Melatonin is a potential therapeutic agent for treating cerebrovascular dysfunction associated with oxidative stress and developmental hypoxia in neonates.


Asunto(s)
Hipoxia/tratamiento farmacológico , Melatonina/uso terapéutico , Animales , Circulación Cerebrovascular/efectos de los fármacos , Óxido Nítrico/metabolismo , Estrés Oxidativo/efectos de los fármacos , Ovinos
16.
Artículo en Inglés | MEDLINE | ID: mdl-25610428

RESUMEN

In human and sheep newborns, brown adipose tissue (BAT) accrued during fetal development is used for newborn thermogenesis. Here, we explored the role of maternal melatonin during gestation on the amount and functionality of BAT in the neonate. We studied BAT from six lambs gestated by ewes exposed to constant light from 63% gestation until delivery to suppress melatonin (LL), six lambs gestated by ewes exposed to LL but receiving daily oral melatonin (12 mg at 1700 h, LL + Mel) and another six control lambs gestated by ewes maintained in 12 h light:12 h dark (LD). Lambs were instrumented at 2 days of age. At 4-6 days of age, they were exposed to 24°C (thermal neutrality conditions) for 1 h, 4°C for 1 h, and 24°C for 1 h. Afterward, lambs were euthanized and BAT was dissected for mRNA measurement, histology, and ex vivo experiments. LL newborns had lower central BAT and skin temperature under thermal neutrality and at 4°C, and higher plasma norepinephrine concentration than LD newborns. In response to 4°C, they had a pronounced decrease in skin temperature and did not increase plasma glycerol. BAT weight in LL newborns was about half of that of LD newborns. Ex vivo, BAT from LL newborns showed increased basal lipolysis and did not respond to NE. In addition, expression of adipogenic/thermogenic genes (UCP1, ADBR3, PPARγ, PPARα, PGC1α, C/EBPß, and perilipin) and of the clock genes Bmal1, Clock, and Per2 was increased. Remarkably, the effects observed in LL newborns were absent in LL + Mel newborns. Thus, our results support that maternal melatonin during gestation is important in determining amount and normal functionality of BAT in the neonate.

17.
PLoS One ; 8(2): e57710, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23469055

RESUMEN

Disruption of the maternal environment during pregnancy is a key contributor to offspring diseases that develop in adult life. To explore the impact of chronodisruption during pregnancy in primates, we exposed pregnant capuchin monkeys to constant light (eliminating the maternal melatonin rhythm) from the last third of gestation to term. Maternal temperature and activity circadian rhythms were assessed as well as the newborn temperature rhythm. Additionally we studied the effect of daily maternal melatonin replacement during pregnancy on these rhythms. Ten pregnant capuchin monkeys were exposed to constant light from 60% of gestation to term. Five received a daily oral dose of melatonin (250 µg kg/body weight) at 1800 h (LL+Mel) and the other five a placebo (LL). Six additional pregnant females were maintained in a 14∶10 light:dark cycles and their newborns were used as controls (LD). Rhythms were recorded 96 h before delivery in the mother and at 4-6 days of age in the newborn. Exposure to constant light had no effect on the maternal body temperature rhythm however it delayed the acrophase of the activity rhythm. Neither rhythm was affected by melatonin replacement. In contrast, maternal exposure to constant light affected the newborn body temperature rhythm. This rhythm was entrained in control newborns whereas LL newborns showed a random distribution of the acrophases over 24-h. In addition, mean temperature was decreased (34.0±0.6 vs 36.1±0.2°C, in LL and control, respectively P<0.05). Maternal melatonin replacement during pregnancy re-synchronized the acrophases and restored mean temperature to the values in control newborns. Our findings demonstrate that prenatal melatonin is a Zeitgeber for the newborn temperature rhythm and supports normal body temperature maintenance. Altogether these prenatal melatonin effects highlight the physiological importance of the maternal melatonin rhythm during pregnancy for the newborn primate.


Asunto(s)
Ritmo Circadiano/efectos de la radiación , Luz , Madres , Temperatura , Animales , Animales Recién Nacidos , Conducta Animal/efectos de los fármacos , Conducta Animal/fisiología , Conducta Animal/efectos de la radiación , Cebus , Ritmo Circadiano/efectos de los fármacos , Femenino , Masculino , Exposición Materna/efectos adversos , Melatonina/farmacología , Embarazo , Tercer Trimestre del Embarazo/efectos de los fármacos , Tercer Trimestre del Embarazo/fisiología , Tercer Trimestre del Embarazo/efectos de la radiación , Factores de Tiempo
18.
PLoS One ; 7(8): e42713, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22912724

RESUMEN

Surprisingly, in our modern 24/7 society, there is scant information on the impact of developmental chronodisruption like the one experienced by shift worker pregnant women on fetal and postnatal physiology. There are important differences between the maternal and fetal circadian systems; for instance, the suprachiasmatic nucleus is the master clock in the mother but not in the fetus. Despite this, several tissues/organs display circadian oscillations in the fetus. Our hypothesis is that the maternal plasma melatonin rhythm drives the fetal circadian system, which in turn relies this information to other fetal tissues through corticosterone rhythmic signaling. The present data show that suppression of the maternal plasma melatonin circadian rhythm, secondary to exposure of pregnant rats to constant light along the second half of gestation, had several effects on fetal development. First, it induced intrauterine growth retardation. Second, in the fetal adrenal in vivo it markedly affected the mRNA expression level of clock genes and clock-controlled genes as well as it lowered the content and precluded the rhythm of corticosterone. Third, an altered in vitro fetal adrenal response to ACTH of both, corticosterone production and relative expression of clock genes and steroidogenic genes was observed. All these changes were reversed when the mother received a daily dose of melatonin during the subjective night; supporting a role of melatonin on overall fetal development and pointing to it as a 'time giver' for the fetal adrenal gland. Thus, the present results collectively support that the maternal circadian rhythm of melatonin is a key signal for the generation and/or synchronization of the circadian rhythms in the fetal adrenal gland. In turn, low levels and lack of a circadian rhythm of fetal corticosterone may be responsible of fetal growth restriction; potentially inducing long term effects in the offspring, possibility that warrants further research.


Asunto(s)
Glándulas Suprarrenales/embriología , Relojes Circadianos/efectos de los fármacos , Relojes Circadianos/efectos de la radiación , Feto/fisiología , Luz/efectos adversos , Melatonina/farmacología , Madres , Factores de Transcripción ARNTL/genética , Glándulas Suprarrenales/efectos de los fármacos , Glándulas Suprarrenales/fisiología , Glándulas Suprarrenales/efectos de la radiación , Hormona Adrenocorticotrópica/farmacología , Animales , Ritmo Circadiano/efectos de los fármacos , Ritmo Circadiano/efectos de la radiación , Corticosterona/sangre , Proteína 1 de la Respuesta de Crecimiento Precoz/genética , Femenino , Feto/efectos de los fármacos , Feto/embriología , Feto/efectos de la radiación , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Regulación del Desarrollo de la Expresión Génica/efectos de la radiación , Proteínas Circadianas Period/genética , Fosfoproteínas/genética , Embarazo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Ratas , Ratas Sprague-Dawley , Receptores de Melatonina/genética , Factores de Tiempo
19.
Rev. chil. endocrinol. diabetes ; 5(1): 6-12, ene. 2012. graf, ilus
Artículo en Español | LILACS | ID: lil-640646

RESUMEN

Background: Circadian cortisol production results from the interaction of the circadian production of ACTH, the autonomic nervous system and intrinsic factors within the gland. An additional regulator is the neuro-hormone melatonin. In human adrenal gland cultures, melatonin inhibited ACTH stimulated cortisol production and Per1 mRNA expression. ACTH actions on the adrenal involve early and late responses. Aim: To investigate the effects of melatonin on the time course of ACTH stimulated cortisol production and of Per1 expression in the lamb adrenal gland. Material and Methods: Adrenal glands and plasma of five newborn lambs were obtained. Adrenal glands were cut in 15 mg explants. Three of these explants were stored for RNA extraction. The rest of explants were using in different culture protocols with ACTH and melatonin. Results: Lambs had an in vivo a circadian variation in plasma cortisol and in adrenal Per1 expression. In vitro, ACTH stimulated an early and late increase in cortisol production and an early increase in Per1 expression reaching a maximum at 3 hours of treatment. Melatonin inhibited the early Per1 response to ACTH without affecting the early ACTH stimulated cortisol production. However, melatonin inhibited the late response of cortisol production to ACTH. Conclusions: The inhibitory actions of melatonin on Per1 response to ACTH may contribute to the inhibitory effects of melatonin on adrenal steroidogenic response to ACTH.


Asunto(s)
Animales , Glándulas Suprarrenales/metabolismo , Hidrocortisona/metabolismo , Hormona Adrenocorticotrópica/metabolismo , Melatonina/metabolismo , Proteínas Circadianas Period , ARN Mensajero/metabolismo , Ritmo Circadiano , Técnicas de Cultivo , Ovinos , Factores de Tiempo
20.
Mol Cell Endocrinol ; 349(1): 68-75, 2012 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-21840372

RESUMEN

Throughout gestation, the close relationship between mothers and their progeny ensures adequate development and a successful transition to postnatal life. By living inside the maternal compartment, the fetus is inevitably exposed to rhythms of the maternal internal milieu such as temperature; rhythms originated by maternal food intake and maternal melatonin, one of the few maternal hormones that cross the placenta unaltered. The fetus, immature by adult standards, is however perfectly fit to accomplish the dual functions of living in the uterine environment and developing the necessary tools to "mature" for the next step, i.e. to be a competent newborn. In the fetal physiological context, organ function differs from the same organ's function in the newborn and adult. This may also extend to the developing circadian system. The information reviewed here suggests that the fetal circadian system is organized differently from that of the adult. Moreover, the fetal circadian rhythm is not just present simply as the initial immature expression of a mechanism that has function in the postnatal animal only. We propose that the fetal suprachiasmatic nucleus (SCN) of the hypothalamus and fetal organs are peripheral maternal circadian oscillators, entrained by different maternal signals. Conceptually, the arrangement produces internal temporal order during fetal life, inside the maternal compartment. Following birth, it will allow for postnatal integration of the scattered fetal circadian clocks into an adult-like circadian system commanded by the SCN.


Asunto(s)
Ritmo Circadiano , Feto/fisiología , Glándulas Suprarrenales/embriología , Glándulas Suprarrenales/metabolismo , Animales , Femenino , Feto/metabolismo , Humanos , Intercambio Materno-Fetal , Melatonina/metabolismo , Melatonina/fisiología , Embarazo , Núcleo Supraquiasmático/embriología , Núcleo Supraquiasmático/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...