Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Nucleic Acids Res ; 40(11): 4765-73, 2012 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-22344692

RESUMEN

Messenger RNA sequences possess specific nucleotide patterns distinguishing them from non-coding genomic sequences. In this study, we explore the utilization of modified Markov models to analyze sequences up to 44 bp, far beyond the 8-bp limit of conventional Markov models, for exon/intron discrimination. In order to analyze nucleotide sequences of this length, their information content is first reduced by conversion into shorter binary patterns via the application of numerous abstraction schemes. After the conversion of genomic sequences to binary strings, homogenous Markov models trained on the binary sequences are used to discriminate between exons and introns. We term this approach the Binary Abstraction Markov Model (BAMM). High-quality abstraction schemes for exon/intron discrimination are selected using optimization algorithms on supercomputers. The best MM classifiers are then combined using support vector machines into a single classifier. With this approach, over 95% classification accuracy is achieved without taking reading frame into account. With further development, the BAMM approach can be applied to sequences lacking the genetic code such as ncRNAs and 5'-untranslated regions.


Asunto(s)
Algoritmos , Exones , Intrones , Análisis de Secuencia de ADN/métodos , Codón , Humanos , Cadenas de Markov , Máquina de Vectores de Soporte , Regiones no Traducidas
2.
Int J Neural Syst ; 12(3-4): 203-18, 2002.
Artículo en Inglés | MEDLINE | ID: mdl-12370962

RESUMEN

This paper proposes a non-recurrent training algorithm, resilient propagation, for the Simultaneous Recurrent Neural network operating in relaxation-mode for computing high quality solutions of static optimization problems. Implementation details related to adaptation of the recurrent neural network weights through the non-recurrent training algorithm, resilient backpropagation, are formulated through an algebraic approach. Performance of the proposed neuro-optimizer on a well-known static combinatorial optimization problem, the Traveling Salesman Problem, is evaluated on the basis of computational complexity measures and, subsequently, compared to performance of the Simultaneous Recurrent Neural network trained with the standard backpropagation, and recurrent backpropagation for the same static optimization problem. Simulation results indicate that the Simultaneous Recurrent Neural network trained with the resilient backpropagation algorithm is able to locate superior quality solutions through comparable amount of computational effort for the Traveling Salesman Problem.


Asunto(s)
Algoritmos , Inteligencia Artificial , Redes Neurales de la Computación , Reproducibilidad de los Resultados
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA