Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Transl Med ; 21(1): 653, 2023 09 22.
Artículo en Inglés | MEDLINE | ID: mdl-37740179

RESUMEN

BACKGROUND: Kaposi sarcoma (KS) is a multicentric tumor caused by Kaposi sarcoma herpesvirus (KSHV) that leads to morbidity and mortality among people with HIV worldwide. KS commonly involves the skin but can occur in the gastrointestinal tract (GI) in severe cases. METHODS: RNA sequencing was used to compare the cellular and KSHV gene expression signatures of skin and GI KS lesions in 44 paired samples from 19 participants with KS alone or with concurrent KSHV-associated diseases. Analyses of KSHV expression from KS lesions identified transcriptionally active areas of the viral genome. RESULTS: The transcript of an essential viral lytic gene, ORF75, was detected in 91% of KS lesions. Analyses of host genes identified 370 differentially expressed genes (DEGs) unique to skin KS and 58 DEGs unique to GI KS lesions as compared to normal tissue. Interleukin (IL)-6 and IL-10 gene expression were higher in skin lesions as compared to normal skin but not in GI KS lesions. Twenty-six cellular genes were differentially expressed in both skin and GI KS tissues: these included Fms-related tyrosine kinase 4 (FLT4), encoding an angiogenic receptor, and Stanniocalcin 1 (STC1), a secreted glycoprotein. FLT4 and STC1 were further investigated in functional studies using primary lymphatic endothelial cells (LECs). In these models, KSHV infection of LECs led to increased tubule formation that was impaired upon knock-down of STC1 or FLT4. CONCLUSIONS: This study of transcriptional profiling of KS tissue provides novel insights into the characteristics and pathogenesis of this unique virus-driven neoplasm.


Asunto(s)
Herpesvirus Humano 8 , Sarcoma de Kaposi , Neoplasias Cutáneas , Humanos , Sarcoma de Kaposi/genética , Células Endoteliales , Herpesvirus Humano 8/genética , Piel , Interleucina-6
3.
mBio ; 12(6): e0290721, 2021 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-34781692

RESUMEN

Oncogenic gammaherpesviruses express viral products during latent and lytic infection that block the innate immune response. Previously, we found that Kaposi's sarcoma herpesvirus (KSHV/human herpesvirus-8) viral microRNAs (miRNAs) downregulate cholesterol biogenesis, and we hypothesized that this prevents the production of 25-hydroxycholesterol (25HC), a cholesterol derivative. 25HC blocks KSHV de novo infection of primary endothelial cells at a postentry step and decreases viral gene expression of LANA (latency-associated nuclear antigen) and RTA. Herein we expanded on this observation by determining transcriptomic changes associated with 25HC treatment of primary endothelial cells using RNA sequencing (RNA-Seq). We found that 25HC treatment inhibited KSHV gene expression and induced interferon-stimulated genes (ISGs) and several inflammatory cytokines (interleukin 8 [IL-8], IL-1α). Some 25HC-induced genes were partially responsible for the broadly antiviral effect of 25HC against several viruses. Additionally, we found that 25HC inhibited infection of primary B cells by a related oncogenic virus, Epstein-Barr virus (EBV/human herpesvirus-4) by suppressing key viral genes such as LMP-1 and inducing apoptosis. RNA-Seq analysis revealed that IL-1 and IL-8 pathways were induced by 25HC in both primary endothelial cells and B cells. We also found that the gene encoding cholesterol 25-hydroxylase (CH25H), which converts cholesterol to 25HC, can be induced by type I interferon (IFN) in human B cell-enriched peripheral blood mononuclear cells (PBMCs). We propose a model wherein viral miRNAs target the cholesterol pathway to prevent 25HC production and subsequent induction of antiviral ISGs. Together, these results answer some important questions about a widely acting antiviral (25HC), with implications for multiple viral and bacterial infections. IMPORTANCE A cholesterol derivative, 25-hydroxycholesterol (25HC), has been demonstrated to inhibit infections from widely different bacteria and viruses, including severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). However, its mechanism of activity is still not fully understood. In this work, we look at gene expression changes in the host and virus after 25HC treatment to find clues about its antiviral activity. We likewise demonstrate that 25HC is also antiviral against EBV, a common cancer-causing virus. We compared our results with previous data from antiviral screening assays and found the same pathways resulting in antiviral activity. Together, these results bring us closer to understanding how a modified form of cholesterol works against several viruses.


Asunto(s)
Citocinas/inmunología , Infecciones por Virus de Epstein-Barr/inmunología , Herpesvirus Humano 4/efectos de los fármacos , Herpesvirus Humano 8/efectos de los fármacos , Hidroxicolesteroles/farmacología , Hidroxicolesteroles/uso terapéutico , Inflamación/inmunología , Linfocitos B/efectos de los fármacos , Linfocitos B/inmunología , Linfocitos B/virología , Células Cultivadas , Citocinas/genética , Células Endoteliales/efectos de los fármacos , Células Endoteliales/inmunología , Células Endoteliales/virología , Infecciones por Virus de Epstein-Barr/tratamiento farmacológico , Regulación Viral de la Expresión Génica , Herpesvirus Humano 4/genética , Herpesvirus Humano 8/genética , Humanos , Hidroxicolesteroles/inmunología , Análisis de Secuencia de ARN , Latencia del Virus , Replicación Viral
4.
Semin Cell Dev Biol ; 111: 135-147, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-32631785

RESUMEN

Oncogenic DNA viruses establish lifelong infections in humans, and they cause cancers, often in immunocompromised patients, despite anti-viral immune surveillance targeted against viral antigens. High-throughput sequencing techniques allowed the field to identify novel viral non-coding RNAs (ncRNAs). ncRNAs are ideal factors for DNA viruses to exploit; they are non-immunogenic to T cells, thus viral ncRNAs can manipulate host cells without evoking adaptive immune responses. Viral ncRNAs may still trigger the host innate immune response, but many viruses encode decoys/inhibitors to counter-act and evade recognition. In addition, ncRNAs can be secreted to the extracellular space and influence adjacent cells to create a pro-viral microenvironment. In this review, we present recent progress in understanding interactions between oncoviruses and ncRNAs including small and long ncRNAs, microRNAs, and recently identified viral circular RNAs. In addition, potential clinical applications for ncRNA will be discussed. Extracellular ncRNAs are suggested to be diagnostic and prognostic biomarkers and, with the realization of the importance of viral ncRNAs in tumorigenesis, approaches to target critical viral ncRNAs are emerging. Further understanding of viral utilization of ncRNAs will advance anti-viral therapeutics beyond conventional medication and vaccination.


Asunto(s)
Evasión Inmune/genética , MicroARNs/genética , Neoplasias/genética , ARN Circular/genética , ARN Largo no Codificante/genética , ARN Viral/genética , Virosis/genética , Alphapapillomavirus/genética , Alphapapillomavirus/crecimiento & desarrollo , Alphapapillomavirus/patogenicidad , Antivirales/uso terapéutico , Carcinogénesis/genética , Carcinogénesis/inmunología , Carcinogénesis/patología , Regulación de la Expresión Génica , Herpesvirus Humano 4/genética , Herpesvirus Humano 4/crecimiento & desarrollo , Herpesvirus Humano 4/patogenicidad , Herpesvirus Humano 8/genética , Herpesvirus Humano 8/crecimiento & desarrollo , Herpesvirus Humano 8/patogenicidad , Virus Linfotrópico T Tipo 1 Humano/genética , Virus Linfotrópico T Tipo 1 Humano/crecimiento & desarrollo , Virus Linfotrópico T Tipo 1 Humano/patogenicidad , Humanos , Inmunidad Innata , MicroARNs/antagonistas & inhibidores , MicroARNs/inmunología , Neoplasias/inmunología , Neoplasias/terapia , Neoplasias/virología , Oligonucleótidos Antisentido/uso terapéutico , ARN Circular/inmunología , ARN Largo no Codificante/inmunología , ARN Viral/inmunología , Transducción de Señal , Virosis/inmunología , Virosis/terapia , Virosis/virología
6.
Proc Natl Acad Sci U S A ; 115(50): 12805-12810, 2018 12 11.
Artículo en Inglés | MEDLINE | ID: mdl-30455306

RESUMEN

Noncoding RNAs have substantial effects in host-virus interactions. Circular RNAs (circRNAs) are novel single-stranded noncoding RNAs which can decoy other RNAs or RNA-binding proteins to inhibit their functions. The role of circRNAs is largely unknown in the context of Kaposi's sarcoma herpesvirus (KSHV). We hypothesized that circRNAs influence viral infection by inhibiting host and/or viral factors. Transcriptome analysis of KSHV-infected primary endothelial cells and a B cell line identified human circRNAs that are differentially regulated upon infection. We confirmed the expression changes with divergent PCR primers and RNase R treatment of specific circRNAs. Ectopic expression of hsa_circ_0001400, a circRNA induced by infection, suppressed expression of key viral latent gene LANA and lytic gene RTA in KSHV de novo infections. Since human herpesviruses express noncoding RNAs like microRNAs, we searched for viral circRNAs encoded in the KSHV genome. We performed circRNA-Seq analysis with RNase R-treated, circRNA-enriched RNA from KSHV-infected cells. We identified multiple circRNAs encoded by the KSHV genome that are expressed in KSHV-infected endothelial cells and primary effusion lymphoma (PEL) cells. The KSHV circRNAs are located within ORFs of viral lytic genes, are up-regulated upon the induction of the lytic cycle, and alter cell growth. Viral circRNAs were also detected in lymph nodes from patients of KSHV-driven diseases such as PEL, Kaposi's sarcoma, and multicentric Castleman's disease. We revealed new host-virus interactions of circRNAs: human antiviral circRNAs are activated in response to KSHV infection, and viral circRNA expression is induced in the lytic phase of infection.


Asunto(s)
Herpesvirus Humano 8/genética , ARN/genética , Sarcoma de Kaposi/genética , Sarcoma de Kaposi/virología , Linfocitos B/virología , Enfermedad de Castleman/genética , Enfermedad de Castleman/virología , Línea Celular , Células Endoteliales/virología , Perfilación de la Expresión Génica/métodos , Regulación Viral de la Expresión Génica/genética , Genes Virales/genética , Células HEK293 , Células Endoteliales de la Vena Umbilical Humana , Humanos , Linfoma de Efusión Primaria/genética , Linfoma de Efusión Primaria/virología , MicroARNs/genética , Sistemas de Lectura Abierta/genética , ARN Circular , ARN Viral/genética
7.
J Cell Biol ; 216(9): 2611-2613, 2017 09 04.
Artículo en Inglés | MEDLINE | ID: mdl-28819012

RESUMEN

Herpesvirus genomes exist and replicate as episomes inside the host cell nucleus during latent infection. Chiu et al. (2017. J. Cell Biol. https://doi.org/10.1083/jcb.201702013) find that unlike Epstein-Barr virus, which partitions viral genomes faithfully during cell division, Kaposi's Sarcoma-associated herpesvirus clusters viral genomes into loci that are distributed unequally to daughter cells.


Asunto(s)
Herpesvirus Humano 8/genética , Replicación Viral , Genoma Viral , Herpesvirus Humano 4/genética , Humanos
8.
mBio ; 8(4)2017 07 11.
Artículo en Inglés | MEDLINE | ID: mdl-28698273

RESUMEN

From various screens, we found that Kaposi's sarcoma-associated herpesvirus (KSHV) viral microRNAs (miRNAs) target several enzymes in the mevalonate/cholesterol pathway. 3-Hydroxy-3-methylglutaryl-coenzyme A (CoA) synthase 1 (HMGCS1), 3-hydroxy-3-methylglutaryl-CoA reductase (HMGCR [a rate-limiting step in the mevalonate pathway]), and farnesyl-diphosphate farnesyltransferase 1 (FDFT1 [a committed step in the cholesterol branch]) are repressed by multiple KSHV miRNAs. Transfection of viral miRNA mimics in primary endothelial cells (human umbilical vein endothelial cells [HUVECs]) is sufficient to reduce intracellular cholesterol levels; however, small interfering RNAs (siRNAs) targeting only HMGCS1 did not reduce cholesterol levels. This suggests that multiple targets are needed to perturb this tightly regulated pathway. We also report here that cholesterol levels were decreased in de novo-infected HUVECs after 7 days. This reduction is at least partially due to viral miRNAs, since the mutant form of KSHV lacking 10 of the 12 miRNA genes had increased cholesterol compared to wild-type infections. We hypothesized that KSHV is downregulating cholesterol to suppress the antiviral response by a modified form of cholesterol, 25-hydroxycholesterol (25HC). We found that the cholesterol 25-hydroxylase (CH25H) gene, which is responsible for generating 25HC, had increased expression in de novo-infected HUVECs but was strongly suppressed in long-term latently infected cell lines. We found that 25HC inhibits KSHV infection when added exogenously prior to de novo infection. In conclusion, we found that multiple KSHV viral miRNAs target enzymes in the mevalonate pathway to modulate cholesterol in infected cells during latency. This repression of cholesterol levels could potentially be beneficial to viral infection by decreasing the levels of 25HC.IMPORTANCE A subset of viruses express unique microRNAs (miRNAs), which act like cellular miRNAs to generally repress host gene expression. A cancer virus, Kaposi's sarcoma-associated herpesvirus (KSHV, or human herpesvirus 8 [HHV-8]), encodes multiple miRNAs that repress gene expression of multiple enzymes that are important for cholesterol synthesis. In cells with these viral miRNAs or with natural infection, cholesterol levels are reduced, indicating these viral miRNAs decrease cholesterol levels. A modified form of cholesterol, 25-hydroxycholesterol, is generated directly from cholesterol. Addition of 25-hydroxycholesterol to primary cells inhibited KSHV infection of cells, suggesting that viral miRNAs may decrease cholesterol levels to decrease the concentration of 25-hydroxycholesterol and to promote infection. These results suggest a new virus-host relationship and indicate a previously unidentified viral strategy to lower cholesterol levels.


Asunto(s)
Colesterol/metabolismo , Herpesvirus Humano 8/efectos de los fármacos , Herpesvirus Humano 8/genética , Hidroxicolesteroles/farmacología , MicroARNs/metabolismo , ARN Viral/metabolismo , Acilcoenzima A/genética , Acilcoenzima A/metabolismo , Línea Celular , Células Endoteliales/virología , Regulación Viral de la Expresión Génica , Herpesvirus Humano 8/metabolismo , Interacciones Huésped-Patógeno/efectos de los fármacos , Interacciones Huésped-Patógeno/genética , Humanos , Redes y Vías Metabólicas , MicroARNs/genética , ARN Interferente Pequeño/metabolismo , ARN Viral/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Esteroide Hidroxilasas/genética , Latencia del Virus
9.
J Virol ; 87(16): 8853-61, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23785196

RESUMEN

The SF1 helicase MOV10 is an antiviral factor that is incorporated into human immunodeficiency virus type 1 (HIV-1) virions. We now report that HIV-1 virions also incorporate UPF1, which belongs to the same SF1 helicase subfamily as MOV10 and functions in the nonsense-mediated decay (NMD) pathway. Unlike ectopic MOV10, the overexpression of UPF1 does not impair the infectivity of HIV-1 progeny virions. However, UPF1 becomes a potent inhibitor of HIV-1 progeny virion infectivity when residues required for its helicase activity are mutated. In contrast, equivalent mutations abolish the antiviral activity of MOV10. Importantly, cells depleted of endogenous UPF1, but not of another NMD core component, produce HIV-1 virions of substantially lower specific infectivity. The defect is at the level of reverse transcription, the same stage of the HIV-1 life cycle inhibited by ectopic MOV10. Thus, whereas ectopic MOV10 restricts HIV-1 replication, the related UPF1 helicase functions as a cofactor at an early postentry step.


Asunto(s)
Interacciones Huésped-Patógeno , Transactivadores/metabolismo , Replicación Viral , VIH-1/fisiología , Humanos , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , ARN Helicasas , Transactivadores/genética
10.
Mol Cell ; 34(6): 696-709, 2009 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-19560422

RESUMEN

MicroRNAs (miRNAs), approximately 22 nt noncoding RNAs, assemble into RNA-induced silencing complexes (RISCs) and localize to cytoplasmic substructures called P bodies. Dictated by base-pair complementarity between miRNA and a target mRNA, miRNAs specifically repress posttranscriptional expression of several mRNAs. Here we report that HIV-1 mRNA interacts with RISC proteins and that disrupting P body structures enhances viral production and infectivity. In HIV-1-infected human T lymphocytes, we identified a highly abundant miRNA, miR-29a, which specifically targets the HIV-1 3'UTR region. Inhibiting miR-29a enhanced HIV-1 viral production and infectivity, whereas expressing a miR-29 mimic suppressed viral replication. We also found that specific miR-29a-HIV-1 mRNA interactions enhance viral mRNA association with RISC and P body proteins. Thus we provide an example of a single host miRNA regulating HIV-1 production and infectivity. These studies highlight the significance of miRNAs and P bodies in modulating host cell interactions with HIV-1 and possibly other viruses.


Asunto(s)
VIH-1/patogenicidad , MicroARNs/fisiología , ARN Mensajero/fisiología , ARN Viral/fisiología , Complejo Silenciador Inducido por ARN/metabolismo , Secuencia de Bases , Sitios de Unión , Estructuras Citoplasmáticas/fisiología , ARN Helicasas DEAD-box/genética , ARN Helicasas DEAD-box/metabolismo , VIH-1/genética , VIH-1/metabolismo , Humanos , MicroARNs/genética , MicroARNs/metabolismo , Datos de Secuencia Molecular , Proteínas Proto-Oncogénicas/genética , Proteínas Proto-Oncogénicas/metabolismo , ARN Mensajero/química , ARN Viral/química , Ribonucleasa III/antagonistas & inhibidores , Linfocitos T/virología , Replicación Viral
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...