Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
Cell Syst ; 15(5): 425-444.e9, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38703772

RESUMEN

The placenta is a selective maternal-fetal barrier that provides nourishment and protection from infections. However, certain pathogens can attach to and even cross the placenta, causing pregnancy complications with potential lifelong impacts on the child's health. Here, we profiled at the single-cell level the placental responses to three pathogens associated with intrauterine complications-Plasmodium falciparum, Listeria monocytogenes, and Toxoplasma gondii. We found that upon exposure to the pathogens, all placental lineages trigger inflammatory responses that may compromise placental function. Additionally, we characterized the responses of fetal macrophages known as Hofbauer cells (HBCs) to each pathogen and propose that they are the probable niche for T. gondii. Finally, we revealed how P. falciparum adapts to the placental microenvironment by modulating protein export into the host erythrocyte and nutrient uptake pathways. Altogether, we have defined the cellular networks and signaling pathways mediating acute placental inflammatory responses that could contribute to pregnancy complications.


Asunto(s)
Placenta , Análisis de la Célula Individual , Humanos , Femenino , Embarazo , Placenta/microbiología , Placenta/inmunología , Análisis de la Célula Individual/métodos , Plasmodium falciparum , Listeria monocytogenes/patogenicidad , Listeria monocytogenes/fisiología , Toxoplasma/patogenicidad , Macrófagos/microbiología , Macrófagos/inmunología , Macrófagos/metabolismo , Toxoplasmosis/inmunología , Toxoplasmosis/metabolismo , Inflamación
2.
Cell Stem Cell ; 31(2): 181-195.e9, 2024 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-38237587

RESUMEN

In humans, balanced invasion of trophoblast cells into the uterine mucosa, the decidua, is critical for successful pregnancy. Evidence suggests that this process is regulated by uterine natural killer (uNK) cells, but how they influence reproductive outcomes is unclear. Here, we used our trophoblast organoids and primary tissue samples to determine how uNK cells affect placentation. By locating potential interaction axes between trophoblast and uNK cells using single-cell transcriptomics and in vitro modeling of these interactions in organoids, we identify a uNK cell-derived cytokine signal that promotes trophoblast differentiation at the late stage of the invasive pathway. Moreover, it affects transcriptional programs involved in regulating blood flow, nutrients, and inflammatory and adaptive immune responses, as well as gene signatures associated with disorders of pregnancy such as pre-eclampsia. Our findings suggest mechanisms on how optimal immunological interactions between uNK cells and trophoblast enhance reproductive success.


Asunto(s)
Trofoblastos Extravellosos , Útero , Embarazo , Femenino , Humanos , Útero/metabolismo , Placentación/fisiología , Trofoblastos , Células Asesinas Naturales
3.
Eur J Immunol ; 54(1): e2350633, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37799110

RESUMEN

In COVID-19, hyperinflammatory and dysregulated immune responses contribute to severity. Patients with pre-existing autoimmune conditions can therefore be at increased risk of severe COVID-19 and/or associated sequelae, yet SARS-CoV-2 infection in this group has been little studied. Here, we performed single-cell analysis of peripheral blood mononuclear cells from patients with three major autoimmune diseases (rheumatoid arthritis, psoriasis, or multiple sclerosis) during SARS-CoV-2 infection. We observed compositional differences between the autoimmune disease groups coupled with altered patterns of gene expression, transcription factor activity, and cell-cell communication that substantially shape the immune response under SARS-CoV-2 infection. While enrichment of HLA-DRlow CD14+ monocytes was observed in all three autoimmune disease groups, type-I interferon signaling as well as inflammatory T cell and monocyte responses varied widely between the three groups of patients. Our results reveal disturbed immune responses to SARS-CoV-2 in patients with pre-existing autoimmunity, highlighting important considerations for disease treatment and follow-up.


Asunto(s)
Enfermedades Autoinmunes , COVID-19 , Humanos , SARS-CoV-2 , Leucocitos Mononucleares , Multiómica , Autoinmunidad , Análisis de la Célula Individual
4.
Nat Cell Biol ; 25(10): 1439-1452, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37709822

RESUMEN

Germline commitment following primordial germ cell (PGC) specification during early human development establishes an epigenetic programme and competence for gametogenesis. Here we follow the progression of nascent PGC-like cells derived from human embryonic stem cells in vitro. We show that switching from BMP signalling for PGC specification to Activin A and retinoic acid resulted in DMRT1 and CDH5 expression, the indicators of migratory PGCs in vivo. Moreover, the induction of DMRT1 and SOX17 in PGC-like cells promoted epigenetic resetting with striking global enrichment of 5-hydroxymethylcytosine and locus-specific loss of 5-methylcytosine at DMRT1 binding sites and the expression of DAZL representing DNA methylation-sensitive genes, a hallmark of the germline commitment programme. We provide insight into the unique role of DMRT1 in germline development for advances in human germ cell biology and in vitro gametogenesis.


Asunto(s)
Metilación de ADN , Células Madre Embrionarias Humanas , Humanos , Diferenciación Celular/genética , Células Germinativas/metabolismo , Transducción de Señal
5.
Redox Biol ; 64: 102801, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37418888

RESUMEN

The high recurrence rate of cystine lithiasis observed in cystinuria patients highlights the need for new therapeutic options to address this chronic disease. There is growing evidence of an antioxidant defect in cystinuria, which has led to test antioxidant molecules as new therapeutic approaches. In this study, the antioxidant l-Ergothioneine was evaluated, at two different doses, as a preventive and long-term treatment for cystinuria in the Slc7a9-/- mouse model. l-Ergothioneine treatments decreased the rate of stone formation by more than 60% and delayed its onset in those mice that still developed calculi. Although there were no differences in metabolic parameters or urinary cystine concentration between control and treated mice, cystine solubility was increased by 50% in the urines of treated mice. We also demonstrate that l-Ergothioneine needs to be internalized by its transporter OCTN1 (Slc22a4) to be effective, as when administrated to the double mutant Slc7a9-/-Slc22a4-/- mouse model, no effect on the lithiasis phenotype was observed. In kidneys, we detected a decrease in GSH levels and an impairment of maximal mitochondrial respiratory capacity in cystinuric mice that l-Ergothioneine treatment was able to restore. Thus, l-Ergothioneine administration prevented cystine lithiasis in the Slc7a9-/- mouse model by increasing urinary cystine solubility and recovered renal GSH metabolism and mitochondrial function. These results support the need for clinical trials to test l-Ergothioneine as a new treatment for cystinuria.


Asunto(s)
Cistinuria , Ergotioneína , Litiasis , Animales , Ratones , Ergotioneína/farmacología , Litiasis/prevención & control , Cistinuria/tratamiento farmacológico , Cistina , Antioxidantes/farmacología , Ratones Noqueados , Masculino , Femenino , Ratones Endogámicos C57BL , Glutatión/metabolismo , Riñón/efectos de los fármacos , Riñón/metabolismo , Mitocondrias/efectos de los fármacos , Estrés Oxidativo
6.
Nature ; 616(7955): 143-151, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36991123

RESUMEN

The relationship between the human placenta-the extraembryonic organ made by the fetus, and the decidua-the mucosal layer of the uterus, is essential to nurture and protect the fetus during pregnancy. Extravillous trophoblast cells (EVTs) derived from placental villi infiltrate the decidua, transforming the maternal arteries into high-conductance vessels1. Defects in trophoblast invasion and arterial transformation established during early pregnancy underlie common pregnancy disorders such as pre-eclampsia2. Here we have generated a spatially resolved multiomics single-cell atlas of the entire human maternal-fetal interface including the myometrium, which enables us to resolve the full trajectory of trophoblast differentiation. We have used this cellular map to infer the possible transcription factors mediating EVT invasion and show that they are preserved in in vitro models of EVT differentiation from primary trophoblast organoids3,4 and trophoblast stem cells5. We define the transcriptomes of the final cell states of trophoblast invasion: placental bed giant cells (fused multinucleated EVTs) and endovascular EVTs (which form plugs inside the maternal arteries). We predict the cell-cell communication events contributing to trophoblast invasion and placental bed giant cell formation, and model the dual role of interstitial EVTs and endovascular EVTs in mediating arterial transformation during early pregnancy. Together, our data provide a comprehensive analysis of postimplantation trophoblast differentiation that can be used to inform the design of experimental models of the human placenta in early pregnancy.


Asunto(s)
Multiómica , Primer Trimestre del Embarazo , Trofoblastos , Femenino , Humanos , Embarazo , Movimiento Celular , Placenta/irrigación sanguínea , Placenta/citología , Placenta/fisiología , Primer Trimestre del Embarazo/fisiología , Trofoblastos/citología , Trofoblastos/metabolismo , Trofoblastos/fisiología , Decidua/irrigación sanguínea , Decidua/citología , Relaciones Materno-Fetales/fisiología , Análisis de la Célula Individual , Miometrio/citología , Miometrio/fisiología , Diferenciación Celular , Organoides/citología , Organoides/fisiología , Células Madre/citología , Transcriptoma , Factores de Transcripción/metabolismo , Comunicación Celular
8.
Cancers (Basel) ; 14(18)2022 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-36139661

RESUMEN

Esophageal adenocarcinoma (EAC) is a highly aggressive cancer and its response to chemo- and radiotherapy is unpredictable. EACs are highly heterogeneous at the molecular level. The aim of this study was to perform gene expression analysis of EACs to identify distinct molecular subgroups and to investigate expression signatures in relation to treatment response. In this prospective observational study, RNA sequencing was performed on pre-treatment endoscopic EAC biopsies from a discovery cohort included between 2012 and 2017 in one Dutch Academic Center. Four additional cohorts were analyzed for validation purposes. Unsupervised clustering was performed on 107 patients to identify biological EAC subgroups. Specific cell signaling profiles were identified and evaluated with respect to predicting response to neo-adjuvant chemo(radio)therapy. We identified and validated three distinct biological EAC subgroups, characterized by (1) p38 MAPK/Toll-like receptor signaling; (2) activated immune system; and (3) impaired cell adhesion. Subgroup 1 was associated with poor response to chemo-radiotherapy. Moreover, an immune signature with activated T-cell signaling, and increased number of activated CD4 T memory cells, neutrophils and dendritic cells, and decreased M1 and M2 macrophages and plasma cells, was associated with complete histopathological response. This study provides a novel molecular classification for EACs. EAC subgroup 1 proved to be more therapy-resistant, while immune signaling was increased in patients with complete response to chemo-radiotherapy. Our findings give insight into the biology of EACs and in cellular signaling mechanisms underlying response to neo-adjuvant treatment. Future implementation of this classification will improve patient stratification and enhance the development of targeted therapies.

9.
Nature ; 607(7919): 540-547, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35794482

RESUMEN

Gonadal development is a complex process that involves sex determination followed by divergent maturation into either testes or ovaries1. Historically, limited tissue accessibility, a lack of reliable in vitro models and critical differences between humans and mice have hampered our knowledge of human gonadogenesis, despite its importance in gonadal conditions and infertility. Here, we generated a comprehensive map of first- and second-trimester human gonads using a combination of single-cell and spatial transcriptomics, chromatin accessibility assays and fluorescent microscopy. We extracted human-specific regulatory programmes that control the development of germline and somatic cell lineages by profiling equivalent developmental stages in mice. In both species, we define the somatic cell states present at the time of sex specification, including the bipotent early supporting population that, in males, upregulates the testis-determining factor SRY and sPAX8s, a gonadal lineage located at the gonadal-mesonephric interface. In females, we resolve the cellular and molecular events that give rise to the first and second waves of granulosa cells that compartmentalize the developing ovary to modulate germ cell differentiation. In males, we identify human SIGLEC15+ and TREM2+ fetal testicular macrophages, which signal to somatic cells outside and inside the developing testis cords, respectively. This study provides a comprehensive spatiotemporal map of human and mouse gonadal differentiation, which can guide in vitro gonadogenesis.


Asunto(s)
Linaje de la Célula , Células Germinativas , Ovario , Diferenciación Sexual , Análisis de la Célula Individual , Testículo , Animales , Cromatina/genética , Cromatina/metabolismo , Femenino , Células Germinativas/citología , Células Germinativas/metabolismo , Células de la Granulosa/citología , Células de la Granulosa/metabolismo , Humanos , Inmunoglobulinas , Macrófagos/metabolismo , Masculino , Glicoproteínas de Membrana , Proteínas de la Membrana , Ratones , Microscopía Fluorescente , Ovario/citología , Ovario/embriología , Factor de Transcripción PAX8 , Embarazo , Primer Trimestre del Embarazo , Segundo Trimestre del Embarazo , Receptores Inmunológicos , Diferenciación Sexual/genética , Testículo/citología , Testículo/embriología , Transcriptoma
10.
Nat Commun ; 13(1): 2885, 2022 05 24.
Artículo en Inglés | MEDLINE | ID: mdl-35610203

RESUMEN

Myeloid cells are central to homeostasis and immunity. Characterising in vitro myelopoiesis protocols is imperative for their use in research, immunotherapies, and understanding human myelopoiesis. Here, we generate a >470K cells molecular map of human induced pluripotent stem cells (iPSC) differentiation into macrophages. Integration with in vivo single-cell atlases shows in vitro differentiation recapitulates features of yolk sac hematopoiesis, before definitive hematopoietic stem cells (HSC) emerge. The diversity of myeloid cells generated, including mast cells and monocytes, suggests that HSC-independent hematopoiesis can produce multiple myeloid lineages. We uncover poorly described myeloid progenitors and conservation between in vivo and in vitro regulatory programs. Additionally, we develop a protocol to produce iPSC-derived dendritic cells (DC) resembling cDC2. Using CRISPR/Cas9 knock-outs, we validate the effects of key transcription factors in macrophage and DC ontogeny. This roadmap of myeloid differentiation is an important resource for investigating human fetal hematopoiesis and new therapeutic opportunities.


Asunto(s)
Células Madre Pluripotentes Inducidas , Mielopoyesis , Diferenciación Celular/genética , Linaje de la Célula/genética , Genómica , Hematopoyesis/genética , Humanos , Mielopoyesis/genética
11.
Nat Genet ; 53(12): 1698-1711, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34857954

RESUMEN

The endometrium, the mucosal lining of the uterus, undergoes dynamic changes throughout the menstrual cycle in response to ovarian hormones. We have generated dense single-cell and spatial reference maps of the human uterus and three-dimensional endometrial organoid cultures. We dissect the signaling pathways that determine cell fate of the epithelial lineages in the lumenal and glandular microenvironments. Our benchmark of the endometrial organoids reveals the pathways and cell states regulating differentiation of the secretory and ciliated lineages both in vivo and in vitro. In vitro downregulation of WNT or NOTCH pathways increases the differentiation efficiency along the secretory and ciliated lineages, respectively. We utilize our cellular maps to deconvolute bulk data from endometrial cancers and endometriotic lesions, illuminating the cell types dominating in each of these disorders. These mechanistic insights provide a platform for future development of treatments for common conditions including endometriosis and endometrial carcinoma.


Asunto(s)
Endometrio/fisiología , Ciclo Menstrual , Diferenciación Celular , Linaje de la Célula , Microambiente Celular , Neoplasias Endometriales/patología , Endometrio/embriología , Endometrio/patología , Femenino , Hormonas Esteroides Gonadales/metabolismo , Humanos , Técnicas In Vitro , Organoides , Receptores Notch/metabolismo , Transducción de Señal , Análisis Espacio-Temporal , Técnicas de Cultivo de Tejidos , Transcriptoma , Útero/patología , Proteínas Wnt/metabolismo
14.
Antioxidants (Basel) ; 10(9)2021 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-34573056

RESUMEN

Cystinuria, a rare inherited aminoaciduria condition, is characterized by the hyperexcretion of cystine, ornithine, lysine, and arginine. Its main clinical manifestation is cystine stone formation in the urinary tract, being responsible for 1-2% total and 6-8% pediatric lithiasis. Cystinuria patients suffer from recurrent lithiasic episodes that might end in surgical interventions, progressive renal functional deterioration, and kidney loss. Cystinuria is monitored for the presence of urinary cystine stones by crystalluria, imaging techniques or urinary cystine capacity; all with limited predicting capabilities. We analyzed blood and urine levels of the natural antioxidant L-ergothioneine in a Type B cystinuria mouse model, and urine levels of its metabolic product S-methyl-L-ergothioneine, in both male and female mice at two different ages and with different lithiasic phenotype. Urinary levels of S-methyl-L-ergothioneine showed differences related to age, gender and lithiasic phenotype. Once normalized by L-ergothioneine to account for interindividual differences, the S-methyl-L-ergothioneine to L-ergothioneine urinary ratio discriminated between cystine lithiasic phenotypes. Urine S-methyl-L-ergothioneine to L-ergothioneine ratio could be easily determined in urine and, as being capable of discriminating between cystine lithiasis phenotypes, it could be used as a lithiasis biomarker in cystinuria patient management.

15.
Nat Commun ; 12(1): 3679, 2021 06 17.
Artículo en Inglés | MEDLINE | ID: mdl-34140473

RESUMEN

Following implantation, the human embryo undergoes major morphogenetic transformations that establish the future body plan. While the molecular events underpinning this process are established in mice, they remain unknown in humans. Here we characterise key events of human embryo morphogenesis, in the period between implantation and gastrulation, using single-cell analyses and functional studies. First, the embryonic epiblast cells transition through different pluripotent states and act as a source of FGF signals that ensure proliferation of both embryonic and extra-embryonic tissues. In a subset of embryos, we identify a group of asymmetrically positioned extra-embryonic hypoblast cells expressing inhibitors of BMP, NODAL and WNT signalling pathways. We suggest that this group of cells can act as the anterior singalling centre to pattern the epiblast. These results provide insights into pluripotency state transitions, the role of FGF signalling and the specification of anterior-posterior axis during human embryo development.


Asunto(s)
Implantación del Embrión/genética , Desarrollo Embrionario , Gastrulación/genética , Regulación del Desarrollo de la Expresión Génica/genética , Estratos Germinativos/metabolismo , Análisis de la Célula Individual/métodos , Vía de Señalización Wnt , Proteína Morfogenética Ósea 1/antagonistas & inhibidores , Linaje de la Célula , Células Cultivadas , Implantación del Embrión/fisiología , Embrión de Mamíferos , Factores de Crecimiento de Fibroblastos/metabolismo , Gastrulación/fisiología , Estratos Germinativos/citología , Humanos , Procesamiento de Imagen Asistido por Computador , Familia de Multigenes , Proteína Nodal/antagonistas & inhibidores , RNA-Seq , Análisis Espacio-Temporal
16.
ChemMedChem ; 16(16): 2491-2496, 2021 08 19.
Artículo en Inglés | MEDLINE | ID: mdl-33821540

RESUMEN

Natural Killer T (NKT) cells play an important role in the immune response and can be activated by glycolipids presented by CD1d protein. We present MCS-0208, an unprecedented arylthioether-phytoceramide able to induce potent invariant NKT (iNKT) cell activation, notably when tested in human iNKT cells. This arylsphingolipid analog has a simple phenyl group containing a single hydroxyl substituent as a surrogate of the sugar ring. The phenylthioether structure contrasts with α-galactosylceramide (1), the prototypical glycolipid used to induce iNKT cell stimulation, where the galactose 2'-OH and 3'-OH substituents are accepted as the minimal footprint and considered critical for NKT T cell receptor (TCR) recognition. A computational study supports the recognition of aromatic compound by the CD1d and TCR proteins as radically new structures for NKT cell stimulation.


Asunto(s)
Hidróxidos/farmacología , Células T Asesinas Naturales/efectos de los fármacos , Receptores de Antígenos de Linfocitos T/inmunología , Relación Dosis-Respuesta a Droga , Humanos , Hidróxidos/química , Simulación del Acoplamiento Molecular , Estructura Molecular , Células T Asesinas Naturales/inmunología , Relación Estructura-Actividad
18.
ACS Pharmacol Transl Sci ; 3(5): 883-895, 2020 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-33073188

RESUMEN

G protein-coupled receptors (GPCR), including the metabotrobic glutamate 5 receptor (mGlu5), are important therapeutic targets and the development of allosteric ligands for targeting GPCRs has become a desirable approach toward modulating receptor activity. Traditional pharmacological approaches toward modulating GPCR activity are still limited since precise spatiotemporal control of a ligand is lost as soon as it is administered. Photopharmacology proposes the use of photoswitchable ligands to overcome this limitation, since their activity can be reversibly controlled by light with high precision. As this is still a growing field, our understanding of the molecular mechanisms underlying the light-induced changes of different photoswitchable ligand pharmacology is suboptimal. For this reason, we have studied the mechanisms of action of alloswitch-1 and MCS0331; two freely diffusible, mGlu5 phenylazopyridine photoswitchable negative allosteric modulators. We combined photochemical, cell-based, and in vivo photopharmacological approaches to investigate the effects of trans-cis azobenzene photoisomerization on the functional activity and binding ability of these ligands to the mGlu5 allosteric pocket. From these results, we conclude that photoisomerization can take place inside and outside the ligand binding pocket, and this leads to a reversible loss in affinity, in part, due to changes in dissociation rates from the receptor. Ligand activity for both photoswitchable ligands deviates from high-affinity mGlu5 negative allosteric modulation (in the trans configuration) to reduced affinity for the mGlu5 in their cis configuration. Importantly, this mechanism translates to dynamic and reversible control over pain following local injection and illumination of negative allosteric modulators into a brain region implicated in pain control.

19.
Anal Bioanal Chem ; 412(22): 5525-5535, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32564119

RESUMEN

Mass spectrometry (MS) binding assays are a label-free alternative to radioligand or fluorescence binding assays, so the readout is based on direct mass spectrometric detection of the test ligand. The study presented here describes the development and validation of a highly sensitive, rapid, and robust MS binding assay for the quantification of the binding of the metabotropic glutamate 5 (mGlu5) negative allosteric modulator (NAM), MPEP (2-methyl-6-phenylethynylpyridine) at the mGlu5 allosteric binding site. The LC-ESI-MS/MS (liquid chromatography-electrospray ionization-tandem mass spectrometric) analytical method was established and validated with a deuterated analogue of MPEP as an internal standard. The developed MS binding assay described here allowed for the determination of MS binding affinity estimates that were in agreement with affinity estimates obtained from a tritiated MPEP radioligand saturation binding assay, indicating the suitability of this methodology for determining affinity estimates for compounds that target mGlu5 allosteric binding sites. Graphical abstract.


Asunto(s)
Cromatografía Líquida de Alta Presión/métodos , Receptor del Glutamato Metabotropico 5/metabolismo , Espectrometría de Masa por Ionización de Electrospray/métodos , Espectrometría de Masas en Tándem/métodos , Sitio Alostérico , Células HEK293 , Humanos , Ligandos , Límite de Detección , Unión Proteica , Ensayo de Unión Radioligante , Reproducibilidad de los Resultados
20.
Cir Esp (Engl Ed) ; 96(4): 221-225, 2018 Apr.
Artículo en Inglés, Español | MEDLINE | ID: mdl-29605451

RESUMEN

INTRODUCTION: Hospital readmission is used as a measure of quality healthcare. The aim of this study was to determine the incidence, causes, and risk factors related to emergency consultations and readmissions within 30 and 90 days in patients undergoing laparoscopic gastric bypass and laparoscopic sleeve gastrectomy. METHODS: Retrospective study of 429 patients operated on from January 2004 to July 2015 from a prospectively maintained database and electronic medical records. Demographic data, type of intervention, postoperative complications, length of hospital stay and records of emergency visits and readmissions were analyzed. RESULTS: Within the first 90 days postoperative, a total of 117 (27%) patients consulted the Emergency Department and 24 (6%) were readmitted. The most common reasons for emergency consultation were noninfectious problems related to the surgical wound (n=40, 34%) and abdominal pain (n=28, 24%), which was also the first cause of readmission (n=9, 37%). Postoperative complications, reintervention, associated surgery in the same operation and depression were risk factors for emergency consultation within the first 90 days of the postoperative period. CONCLUSIONS: Despite the high number of patients who visit the Emergency Department in the first 90 days of the postoperative period, few require readmission and none surgical reoperation. It is important to know the reasons for emergency consultation to establish preventive measures and improve the quality of care.


Asunto(s)
Cirugía Bariátrica , Servicio de Urgencia en Hospital/estadística & datos numéricos , Readmisión del Paciente/estadística & datos numéricos , Complicaciones Posoperatorias/epidemiología , Femenino , Humanos , Incidencia , Masculino , Persona de Mediana Edad , Complicaciones Posoperatorias/etiología , Estudios Retrospectivos , Factores de Riesgo , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA