Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Int J Mol Sci ; 24(24)2023 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-38139145

RESUMEN

Adolescent binge drinking is a social problem with a long-lasting impact on cognitive functions. The cannabinoid type-1 (CB1) receptor of the endocannabinoid system (ECS) is involved in brain synaptic plasticity, cognition and behavior via receptor localization at specific subcellular compartments of the cortical, limbic and motor regions. Alcohol (EtOH) intake affects the ECS, CB1 and their functions. Evidence indicates that binge drinking during adolescence impairs memory via the abrogation of CB1-dependent synaptic plasticity in the hippocampus. However, the impact of EtOH consumption on global CB1 receptor expression in the adult brain is unknown. We studied this using optical density analysis throughout brain regions processed for light microscopy (LM) immunohistotochemistry. CB1 staining decreased significantly in the secondary motor cortex, cerebellum, cingulate cortex, amygdala and nucleus accumbens. Next, as omega-3 (n-3) polyunsaturated fatty acids (PUFAs) rescue synaptic plasticity and improve EtOH-impaired cognition, we investigated whether docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) had any effect on CB1 receptors. N-3 intake during EtOH abstinence restored CB1 immunostaining in the secondary motor cortex, cerebellum and amygdala, and ameliorated receptor density in the cingulate cortex. These results show that n-3 supplementation recovers CB1 receptor expression disrupted by EtOH in distinct brain regions involved in motor functions and cognition.


Asunto(s)
Consumo Excesivo de Bebidas Alcohólicas , Cannabinoides , Ratones , Animales , Receptores de Cannabinoides , Etanol , Endocannabinoides , Encéfalo , Receptor Cannabinoide CB1
2.
Front Nutr ; 10: 1068343, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37090780

RESUMEN

Alcohol is the most widely consumed psychoactive substance in the world that has a severe impact on many organs and bodily systems, particularly the liver and nervous system. Alcohol use during pregnancy roots long-lasting changes in the newborns and during adolescence has long-term detrimental effects especially on the brain. The brain contains docosahexaenoic acid (DHA), a major omega-3 (n-3) fatty acid (FA) that makes up cell membranes and influences membrane-associated protein function, cell signaling, gene expression and lipid production. N-3 is beneficial in several brain conditions like neurodegenerative diseases, ameliorating cognitive impairment, oxidative stress, neuronal death and inflammation. Because alcohol decreases the levels of n-3, it is timely to know whether n-3 supplementation positively modifies alcohol-induced injuries. The aim of this review is to summarize the state-of-the-art of the n-3 effects on certain conditions caused by alcohol intake, focusing primarily on brain damage and alcoholic liver disease.

3.
Glia ; 71(4): 866-879, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36437738

RESUMEN

The alteration of the endocannabinoid tone usually associates with changes in the expression and/or function of the cannabinoid CB1 receptor. In Alzheimer's disease (AD), amyloid beta (Aß)-containing aggregates induce a chronic inflammatory response leading to reactivity of both microglia and astrocytes. However, how this glial response impacts on the glial CB1 receptor expression in the subiculum of a mouse model of AD, a brain region particularly affected by large accumulation of plaques and concomitant subcellular changes in microglia and astrocytes, is unknown. The CB1 receptor localization in both glial cells was investigated in the subiculum of male 5xFAD/CB2 EGFP/f/f (AD model) and CB2 EGFP/f/f mice by immuno-electron microscopy. The findings revealed that glial CB1 receptors suffer remarkable changes in the AD mouse. Thus, CB1 receptor expression increases in reactive microglia in 5xFAD/CB2 EGFP/f/f , but remains constant in astrocytes with CB1 receptor labeling rising proportionally to the perimeter of the reactive astrocytes. Not least, the CB1 receptor localization in microglial processes in the subiculum of controls and closely surrounding amyloid plaques and dystrophic neurites of the AD model, supports previous suggestions of the presence of the CB1 receptor in microglia. These findings on the correlation between glial reactivity and the CB1 receptor expression in microglial cells and astrocytes, contribute to the understanding of the role of the endocannabinoid system in the pathophysiology of Alzheimer's disease.


Asunto(s)
Enfermedad de Alzheimer , Cannabinoides , Masculino , Ratones , Animales , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/metabolismo , Endocannabinoides/metabolismo , Receptores de Cannabinoides/metabolismo , Neuroglía/metabolismo , Microglía/metabolismo , Hipocampo/metabolismo , Placa Amiloide/metabolismo , Modelos Animales de Enfermedad , Ratones Transgénicos
4.
Histochem Cell Biol ; 158(6): 561-569, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-35852615

RESUMEN

The cannabinoid CB1 receptor-mediated functions in astrocytes are highly dependent on the CB1 receptor distribution in these glial cells relative to neuronal sites, particularly at the nearby synapses under normal or pathological conditions. However, the portrait of the CB1 receptor distribution in astroglial compartments remains uncompleted because of the scarce CB1 receptor expression in these cells and the limited identification of astrocytes. The glial fibrillary acidic protein (GFAP) is commonly used as astroglial marker. However, because GFAP is a cytoskeleton protein mostly restricted to the astroglial cell bodies and their main branches, it seems not ideal for the localization of CB1 receptor distribution in astrocytes. Therefore, alternative markers to decipher the actual astroglial CB1 receptors are required. In this work, we have compared the glutamate aspartate transporter (GLAST) versus GFAP for the CB1 receptor localization in astrocytes. We found by immunoelectron microscopy that GLAST reveals almost three-fold astroglial area and four-fold astroglial membranes compared to GFAP. In addition, this better visualization of astrocytes was associated with the detection of 12% of the total CB1 receptor labeling in GLAST-positive astrocytes.


Asunto(s)
Sistema de Transporte de Aminoácidos X-AG , Astrocitos , Proteína Ácida Fibrilar de la Glía , Receptores de Cannabinoides
5.
Biomedicines ; 9(7)2021 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-34356889

RESUMEN

Binge drinking (BD) is a serious health concern in adolescents as high ethanol (EtOH) consumption can have cognitive sequelae later in life. Remarkably, an enriched environment (EE) in adulthood significantly recovers memory in mice after adolescent BD, and the endocannabinoid, 2-arachydonoyl-glycerol (2-AG), rescues synaptic plasticity and memory impaired in adult rodents upon adolescent EtOH intake. However, the mechanisms by which EE improves memory are unknown. We investigated this in adolescent male C57BL/6J mice exposed to a drinking in the dark (DID) procedure four days per week for a duration of 4 weeks. After DID, the mice were nurtured under an EE for 2 weeks and were subjected to the Barnes Maze Test performed the last 5 days of withdrawal. The EE rescued memory and restored the EtOH-disrupted endocannabinoid (eCB)-dependent excitatory long-term depression at the dentate medial perforant path synapses (MPP-LTD). This recovery was dependent on both the cannabinoid CB1 receptor and group I metabotropic glutamate receptors (mGluRs) and required 2-AG. Also, the EE had a positive effect on mice exposed to water through the transient receptor potential vanilloid 1 (TRPV1) and anandamide (AEA)-dependent MPP long-term potentiation (MPP-LTP). Taken together, EE positively impacts different forms of excitatory synaptic plasticity in water- and EtOH-exposed brains.

6.
J Comp Neurol ; 529(9): 2332-2346, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33368252

RESUMEN

The use and abuse of cannabis can be associated with significant pathophysiology, however, it remains unclear whether (1) acute administration of Δ-9-tetrahydrocannabinol (THC) during early adulthood alters the cannabinoid type 1 (CB1 ) receptor localization and expression in cells of the brain, and (2) THC produces structural brain changes. Here we use electron microscopy and a highly sensitive pre-embedding immunogold method to examine CB1 receptors in the hippocampus cornu ammonis subfield 1 (CA1) 30 min after male mice were exposed to a single THC injection (5 mg/kg). The findings show that acute exposure to THC can significantly decrease the percentage of CB1 receptor immunopositive terminals making symmetric synapses, mitochondria, and astrocytes. The percentage of CB1 receptor-labeled terminals forming asymmetric synapses was unaffected. Lastly, CB1 receptor expression was significantly lower at terminals of symmetric and asymmetric synapses as well as in mitochondria. Structurally, CA1 dendrites were significantly larger, and contained more spines and mitochondria following acute THC administration. The area of the dendritic spines, synaptic terminals, mitochondria, and astrocytes decreased significantly following acute THC exposure. Altogether, these results indicate that even a single THC exposure can have a significant impact on CB1 receptor expression, and can alter CA1 ultrastructure, within 30 min of drug exposure. These changes may contribute to the behavioral alterations experienced by young individuals shortly after cannabis intoxication.


Asunto(s)
Región CA1 Hipocampal/metabolismo , Región CA1 Hipocampal/ultraestructura , Agonistas de Receptores de Cannabinoides/administración & dosificación , Dronabinol/administración & dosificación , Receptor Cannabinoide CB1/biosíntesis , Receptor Cannabinoide CB1/ultraestructura , Factores de Edad , Animales , Región CA1 Hipocampal/efectos de los fármacos , Inmunohistoquímica/métodos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Receptor Cannabinoide CB1/agonistas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA