Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
ACS Appl Mater Interfaces ; 15(2): 2812-2824, 2023 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-36622885

RESUMEN

Among candidates at the positive electrode of the next generation of Li-ion technology and even beyond post Li-ion technology as all-solid-state batteries, spinel LiNi0.5Mn1.5O4 (LNMO) is one of the favorites. Nevertheless, before its integration into commercial systems, challenges still remain to be tackled, especially the stabilization of interfaces with the electrolyte (liquid or solid) at high voltage. In this work, a simple, fast, and cheap process is used to prepare a homogeneous coating of Al2O3 type to modify the surface of the spinel LNMO: the supercritical fluid chemical deposition (SFCD) route. This process is, to the best of our knowledge, used for the first time in the battery field. Significantly improved performance was demonstrated vs those of bare LNMO, especially at high rates and for highly loaded electrodes.

2.
Inorg Chem ; 60(18): 14310-14317, 2021 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-34472850

RESUMEN

The reaction between P2-type honeycomb layered oxides Na2Ni2TeO6 and K2Ni2TeO6 enables the formation of NaKNi2TeO6. The compound is characterized by X-ray diffraction and 23Na solid-state nuclear magnetic resonance spectroscopy, and the structure is discussed through density functional theory calculations. In addition to the honeycomb Ni/Te cationic ordering, NaKNi2TeO6 exhibits a unique example of alternation of sodium and potassium layers instead of a random alkali-mixed occupancy. Stacking fault simulations underline the impact of the successive position of the Ni/Te honeycomb layers and validate the presence of multiple stacking sequences within the powder material, in proportions that evolve with the synthesis conditions. In a broader context, this work contributes to a better understanding of the alkali-mixed layered compounds.

3.
J Phys Chem Lett ; 12(31): 7474-7481, 2021 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-34339195

RESUMEN

Lithium-rich layered oxides appear in most roadmaps as next generation Li-ion cathode materials owing to their superior capacity. Within this family, Li2MnO3 represents the archetype material and is often taken as model compound to better understand the complex structural modifications occurring in the first charging cycle. In this work, density functional theory (DFT) calculations have been used to understand the impact of stacking faults in the structural transformations occurring in Li2MnO3 upon delithiation, which are found to hinder the phase transformations leading to structural degradation. The formation energies of both ideal and defective LixMnO3 compositions and the analysis of the encountered ground states have been used to rationalize the predicted differences in terms of structural evolution. From the understanding of the origin in the O1 phase transformation, Mg substitution is proposed as alternative strategy to improve the structural stability in this family of materials.

4.
Inorg Chem ; 58(13): 8347-8356, 2019 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-31199135

RESUMEN

The complete description of defective structures and their impact on materials behavior is a great challenge due to difficulties associated with their reliable characterization in the nanoscale. In this paper, density functional theory (DFT) calculations are used to elucidate the solid-state nuclear magnetic resonance (NMR) spectra of Li2MnO3 which, combined with X-ray diffraction (XRD), provide a full description of disorder in this compound. While XRD allows accurate quantification of planar defects, the use of solid-state NMR reveals limited vacancy concentrations that were undetected by XRD as NMR is highly sensitive to the atomic local environments. The combination of these methods is here proved highly effective in overcoming the challenges of describing in great detail limited concentrations of disorder in transition metal oxides, providing information about structural variables that are essential to their application.

5.
Phys Chem Chem Phys ; 20(35): 23112-23122, 2018 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-30168545

RESUMEN

The microstructural complexity of Li-rich cathode materials has so far hampered understanding the critical link between size, morphology and structural defects with both capacity and voltage fadings that this family of materials exhibits. Li2MnO3 is used here as a model material to extract reliable structure-property relationships that can be further exploited for the development of high-performing and long-lasting Li-rich oxides. A series of samples with microstructural variability have been prepared and thoroughly characterized using the FAULTS software, which allows quantification of planar defects and extraction of average crystallite sizes. Together with transmission electron microscopy (TEM) and density functional theory (DFT) results, the successful application of FAULTS analysis to Li2MnO3 has allowed rationalizing the synthesis conditions and identifying the individual impact of concurrent microstructural features on both voltage and capacity fadings, a necessary step for the development of high-capacity Li-ion cathode materials with enhanced cycle life.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...