Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Heliyon ; 9(5): e15521, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37131434

RESUMEN

Arundo donax L. (giant reed) is a fast-growing, vegetatively multiplying, and rhizomatous perennial grass. It is considered a leading crop for biomass production on marginal and degraded lands under different adverse conditions such as drought, salinity, waterlogging, high and low temperatures, and heavy metal stress. The giant reed tolerance to those stresses is reviewed based on its effects on photosynthetic capacity and biomass production. Possible explanations for the giant reed tolerance against each particular stress were elucidated, as well as changes shown by the plant at a biochemical, physiological and morphological level, that may directly affect its biomass production. The use of giant reed in other areas of interest such as bioconstruction, phytoremediation, and bioremediation, is also reviewed. Arundo donax can be key for circular economy and global warming mitigation.

2.
Rice (N Y) ; 16(1): 2, 2023 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-36633713

RESUMEN

BACKGROUND: Rice is one of the most salt sensitive crops at seedling, early vegetative and reproductive stages. Varieties with salinity tolerance at seedling stage promote an efficient growth at early stages in salt affected soils, leading to healthy vegetative growth that protects crop yield. Saltol major QTL confers capacity to young rice plants growing under salt condition by maintaining a low Na+/K+ molar ratio in the shoots. RESULTS: Marker-assisted backcross (MABC) procedure was adopted to transfer Saltol locus conferring salt tolerance at seedling stage from donor indica IR64-Saltol to two temperate japonica varieties, Vialone Nano and Onice. Forward and background selections were accomplished using polymorphic KASP markers and a final evaluation of genetic background recovery of the selected lines was conducted using 15,580 SNP markers obtained from Genotyping by Sequencing. Three MABC generations followed by two selfing, allowed the identification of introgression lines achieving a recovery of the recurrent parent (RP) genome up to 100% (based on KASP markers) or 98.97% (based on GBS). Lines with highest RP genome recovery (RPGR) were evaluated for agronomical-phenological traits in field under non-salinized conditions. VN1, VN4, O1 lines were selected considering the agronomic evaluations and the RPGR% results as the most interesting for commercial exploitation. A physiological characterization was conducted by evaluating salt tolerance under hydroponic conditions. The selected lines showed lower standard evaluation system (SES) scores: 62% of VN4, and 57% of O1 plants reaching SES 3 or SES 5 respectively, while only 40% of Vialone Nano and 25% of Onice plants recorded scores from 3 to 5, respectively. VN1, VN4 and O1 showed a reduced electrolyte leakage values, and limited negative effects on relative water content and shoot/root fresh weight ratio. CONCLUSION: The Saltol locus was successfully transferred to two elite varieties by MABC in a time frame of three years. The application of background selection until BC3F3 allowed the selection of lines with a RPGR up to 98.97%. Physiological evaluations for the selected lines indicate an improved salinity tolerance at seedling stage. The results supported the effectiveness of the Saltol locus in temperate japonica and of the MABC procedure for recovering of the RP favorable traits.

3.
Front Plant Sci ; 12: 797141, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35126422

RESUMEN

Rice is the most salt sensitive cereal crop and its cultivation is particularly threatened by salt stress, which is currently worsened due to climate change. This study reports the development of salt tolerant introgression lines (ILs) derived from crosses between the salt tolerant indica rice variety FL478, which harbors the Saltol quantitative trait loci (QTL), and the salt-sensitive japonica elite cultivar OLESA. Genotyping-by-sequencing (GBS) and Kompetitive allele specific PCR (KASPar) genotyping, in combination with step-wise phenotypic selection in hydroponic culture, were used for the identification of salt-tolerant ILs. Transcriptome-based genotyping allowed the fine mapping of indica genetic introgressions in the best performing IL (IL22). A total of 1,595 genes were identified in indica regions of IL22, which mainly located in large introgressions at Chromosomes 1 and 3. In addition to OsHKT1;5, an important number of genes were identified in the introgressed indica segments of IL22 whose expression was confirmed [e.g., genes involved in ion transport, callose synthesis, transcriptional regulation of gene expression, hormone signaling and reactive oxygen species (ROS) accumulation]. These genes might well contribute to salt stress tolerance in IL22 plants. Furthermore, comparative transcript profiling revealed that indica introgressions caused important alterations in the background gene expression of IL22 plants (japonica cultivar) compared with its salt-sensitive parent, both under non-stress and salt-stress conditions. In response to salt treatment, only 8.6% of the salt-responsive genes were found to be commonly up- or down-regulated in IL22 and OLESA plants, supporting massive transcriptional reprogramming of gene expression caused by indica introgressions into the recipient genome. Interactions among indica and japonica genes might provide novel regulatory networks contributing to salt stress tolerance in introgression rice lines. Collectively, this study illustrates the usefulness of transcriptomics in the characterization of new rice lines obtained in breeding programs in rice.

4.
Front Plant Sci ; 10: 733, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31231411

RESUMEN

Gibberellins (GAs) are a very important group of phytohormones involved in seed germination, vegetative growth, flowering, and fruit development, being only 4 of the 136 known bioactives: GA1, GA3, GA4, and GA7. It has been evidenced that mutations in the OsGA20ox-2 gene produce rice (Oryza sativa) dwarf varieties, which were one of the main pillars of the green revolution. In this work two main objectives were proposed: (i) develop a rapid and broad phytohormone profiling method and (ii) to study the effects on the GA content of the GA20ox-2 mutation in several rice developmental stages using three varieties (tall variety, elite variety, mutated variety). A phytohormone extraction using an SPE step and HPLC-MS/MS detection using a QqQ instrument was determined which resulted in limits of detection (LOD) and limits of quantification (LOQ) for GAs that varied between 0.1-0.7 and 0.3-2.3 pg ⋅ g-1 (f.w.) of rice sample, respectively, allowing highly sensitive phytohormones detection in samples. Moreover, a good reproducibility was obtained for the GAs as relative standard deviations (RSD) for a 40 ng ⋅ mL-1 pattern varied between 0.3 and 0.9%. Notoriously, GA1 was absent in the coleoptile and GA4 was the GA with higher content in the majority of developmental stages. We also observed a large content increase of the four bioactive GAs in the internode of the flag leaf of the mutated variety allowing to reach same height as the elite variety. Therefore, we provide a rapid and broad phytohormonal profiling method and evidence that the GA20ox-2 mutation is not the only factor generating dwarf varieties. To our knowledge, this is the first study that it has been reported such a high number of simultaneously analyzed gibberellins in rice samples (Oryza sativa ssp. japonica) in different tissues of different growth stages.

5.
Plant Biotechnol (Tokyo) ; 36(4): 269-273, 2019 Dec 25.
Artículo en Inglés | MEDLINE | ID: mdl-31983881

RESUMEN

Anther culture is a fast tool to obtain double haploid plant lines for breeding purposes. In rice, this procedure is commonly performed in two steps: i) induction of calli from anthers and ii) regeneration of plantlets from calli. It has been stated that genotype highly influences the anther culture efficiency, so the media used in each step should be optimized for each variety. In this study, we tested different media modifications of an efficient protocol optimized for a medium sized grain temperate japonica NRVC980385, used as a control, in a long grain temperate japonica rice variety (NRVC20120346), and two long grain tropical japonica varieties (303012 and 303013). We found that the addition of 150 mg l-1 colchicine to the induction medium worked best for all genotypes except for NRVC20120346, whose best induction was obtained with the colchicine-free medium. Referring to regeneration, increased gelling agent in the medium provided the best rates in NRVC980385, improving our former NRVC980385-optimized anther culture protocol. Sorbitol fortified regeneration medium worked the best in the case of the long grain varieties. The presence of colchicine in the induction medium was also related to a higher obtention of double haploid plantlets. This study highlights that genotype is a key factor in the performance of rice anther culture. It has set a first anther culture study on long grain japonica varieties and optimizes the anther culture protocol for temperate japonica medium grain NRVC980385 with the use of colchicine and other additives that increase osmotic stress.

6.
Plant Biotechnol (Tokyo) ; 35(2): 161-166, 2018 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-31819718

RESUMEN

Rice is one of the greatest calorie supply for the world population, especially since its production is almost entirely destined to direct human consumption and its demand will increase along with the world population. There are efforts worldwide to increase rice yields by obtaining new improved and stabilized rice lines. The rice anther culture, a fast and cheap technique, allows to obtain double haploid lines in less than one year. We report its application with an improved protocol in four Mediterranean japonica rice genotypes at F2 generation. We performed a screening test for cold-pretreatment at 5.0±0.1°C and concluded that the optimum duration was 9 days as it produced the higher rate of anther-derived callus induction. This revised protocol was successfully applied to the four genotypes, obtaining good results in all the procedure's steps. At the end, more than 100 of double haploid green plants were generated. Moreover, 9 lines obtained from the anther culture procedure showed good qualities for the Spanish market at the growing, farming and grain production level during the field assays. Therefore, we report an improved anther culture procedure for obtaining double haploid lines from temperate japonica rice genotypes showing high commercialization expectance.

7.
Plant Methods ; 10(1): 5, 2014 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-24475756

RESUMEN

BACKGROUND: TILLING (Targeting Induced Local Lesions IN Genomes) is a reverse genetic method that combines chemical mutagenesis with high-throughput genome-wide screening for point mutation detection in genes of interest. However, this mutation discovery approach faces a particular problem which is how to obtain a mutant population with a sufficiently high mutation density. Furthermore, plant mutagenesis protocols require two successive generations (M1, M2) for mutation fixation to occur before the analysis of the genotype can begin. RESULTS: Here, we describe a new TILLING approach for rice based on ethyl methanesulfonate (EMS) mutagenesis of mature seed-derived calli and direct screening of in vitro regenerated plants. A high mutagenesis rate was obtained (i.e. one mutation in every 451 Kb) when plants were screened for two senescence-related genes. Screening was carried out in 2400 individuals from a mutant population of 6912. Seven sense change mutations out of 15 point mutations were identified. CONCLUSIONS: This new strategy represents a significant advantage in terms of time-savings (i.e. more than eight months), greenhouse space and work during the generation of mutant plant populations. Furthermore, this effective chemical mutagenesis protocol ensures high mutagenesis rates thereby saving in waste removal costs and the total amount of mutagen needed thanks to the mutagenesis volume reduction.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...