Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Mol Biol Evol ; 37(12): 3453-3468, 2020 12 16.
Artículo en Inglés | MEDLINE | ID: mdl-32658962

RESUMEN

Transmission distorters (TDs) are genetic elements that favor their own transmission to the detriments of others. Slx/Slxl1 (Sycp3-like-X-linked and Slx-like1) and Sly (Sycp3-like-Y-linked) are TDs, which have been coamplified on the X and Y chromosomes of Mus species. They are involved in an intragenomic conflict in which each favors its own transmission, resulting in sex ratio distortion of the progeny when Slx/Slxl1 versus Sly copy number is unbalanced. They are specifically expressed in male postmeiotic gametes (spermatids) and have opposite effects on gene expression: Sly knockdown leads to the upregulation of hundreds of spermatid-expressed genes, whereas Slx/Slxl1-deficiency downregulates them. When both Slx/Slxl1 and Sly are knocked down, sex ratio distortion and gene deregulation are corrected. Slx/Slxl1 and Sly are, therefore, in competition but the molecular mechanism remains unknown. By comparing their chromatin-binding profiles and protein partners, we show that SLX/SLXL1 and SLY proteins compete for interaction with H3K4me3-reader SSTY1 (Spermiogenesis-specific-transcript-on-the-Y1) at the promoter of thousands of genes to drive their expression, and that the opposite effect they have on gene expression is mediated by different abilities to recruit SMRT/N-Cor transcriptional complex. Their target genes are predominantly spermatid-specific multicopy genes encoded by the sex chromosomes and the autosomal Speer/Takusan. Many of them have coamplified with not only Slx/Slxl1/Sly but also Ssty during muroid rodent evolution. Overall, we identify Ssty as a key element of the X versus Y intragenomic conflict, which may have influenced gene content and hybrid sterility beyond Mus lineage since Ssty amplification on the Y predated that of Slx/Slxl1/Sly.


Asunto(s)
Evolución Biológica , Proteínas Nucleares/genética , Proteínas/genética , Cromosoma X/genética , Cromosoma Y/genética , Animales , Proteínas de Ciclo Celular/genética , Proteínas de Unión al ADN/genética , Masculino , Ratones Endogámicos C57BL , Proteínas Nucleares/metabolismo , Proteínas Quinasas/genética , Proteínas/metabolismo , Espermátides/metabolismo , Sitio de Iniciación de la Transcripción
2.
Cell Death Differ ; 24(6): 1029-1044, 2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-28475176

RESUMEN

Sperm differentiation requires unique transcriptional regulation and chromatin remodeling after meiosis to ensure proper compaction and protection of the paternal genome. Abnormal sperm chromatin remodeling can induce sperm DNA damage, embryo lethality and male infertility, yet, little is known about the factors which regulate this process. Deficiency in Sly, a mouse Y chromosome-encoded gene expressed only in postmeiotic male germ cells, has been shown to result in the deregulation of hundreds of sex chromosome-encoded genes associated with multiple sperm differentiation defects and subsequent male infertility. The underlying mechanism remained, to date, unknown. Here, we show that SLY binds to the promoter of sex chromosome-encoded and autosomal genes highly expressed postmeiotically and involved in chromatin regulation. Specifically, we demonstrate that Sly knockdown directly induces the deregulation of sex chromosome-encoded H2A variants and of the H3K79 methyltransferase DOT1L. The modifications prompted by loss of Sly alter the postmeiotic chromatin structure and ultimately result in abnormal sperm chromatin remodeling with negative consequences on the sperm genome integrity. Altogether our results show that SLY is a regulator of sperm chromatin remodeling. Finally we identified that SMRT/N-CoR repressor complex is involved in gene regulation during sperm differentiation since members of this complex, in particular TBL1XR1, interact with SLY in postmeiotic male germ cells.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Ensamble y Desensamble de Cromatina , Proteínas Nucleares/metabolismo , Regiones Promotoras Genéticas , Receptores Citoplasmáticos y Nucleares/metabolismo , Proteínas Represoras/metabolismo , Cromosomas Sexuales/metabolismo , Espermatozoides/metabolismo , Proteínas Adaptadoras del Transporte Vesicular , Animales , Cromosomas de los Mamíferos/genética , Cromosomas de los Mamíferos/metabolismo , ADN/metabolismo , Regulación de la Expresión Génica , Masculino , Ratones , Cromosomas Sexuales/genética , Espermatogénesis , Espermatozoides/fisiología
3.
PLoS One ; 10(5): e0125965, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25938567

RESUMEN

In the meiotic prophase, programmed DNA double-strand breaks (DSB) are introduced along chromosomes to promote homolog pairing and recombination. Although meiotic DSBs usually occur in nucleosome-depleted, accessible regions of chromatin, their repair by homologous recombination takes place in a nucleosomal environment. Nucleosomes may represent an obstacle for the recombination machinery and their timely eviction and reincorporation into chromatin may influence the outcome of recombination, for instance by stabilizing recombination intermediates. Here we show in budding yeast that nucleosomes flanking a meiotic DSB are transiently lost during recombination, and that specific histone H3 chaperones, CAF-1 and Hir, are mobilized at meiotic DSBs. However, the absence of these chaperones has no effect on meiotic recombination, suggesting that timely histone reincorporation following their eviction has no influence on the recombination outcome, or that redundant pathways are activated. This study is the first example of the involvement of histone H3 chaperones at naturally occurring, developmentally programmed DNA double-strand breaks.


Asunto(s)
Roturas del ADN de Doble Cadena , Proteínas Fúngicas/metabolismo , Chaperonas de Histonas/metabolismo , Meiosis , Saccharomycetales/genética , Saccharomycetales/metabolismo , Proteínas Fúngicas/genética , Eliminación de Gen , Histonas/metabolismo , Redes y Vías Metabólicas , Viabilidad Microbiana/genética , Mutación , Nucleosomas/metabolismo , Antígeno Nuclear de Célula en Proliferación/metabolismo , Unión Proteica , Esporas Fúngicas
4.
FEBS J ; 281(6): 1571-84, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24456183

RESUMEN

In mammals, X- and Y-encoded genes are transcriptionally shut down during male meiosis, but expression of many of them is (re)activated in spermatids after meiosis. Post-meiotic XY gene expression is regulated by active epigenetic marks, which are de novo incorporated in the sex chromatin of spermatids, and by repressive epigenetic marks inherited during meiosis; alterations in this process lead to male infertility. In the mouse, post-meiotic XY gene expression is known to depend on genetic information carried by the male-specific region of the Y chromosome long arm (MSYq). The MSYq gene Sly has been shown to be a key regulator of post-meiotic sex chromosome gene expression and is necessary for the maintenance/recruitment of repressive epigenetic marks on the sex chromatin, but studies suggest that another MSYq gene may also be required. The best candidate to date is Ssty, an MSYq multi-copy gene of unknown function. Here, we show that SSTY proteins are specifically expressed in round and elongating spermatids, and co-localize with post-meiotic sex chromatin. Moreover, SSTY proteins interact with SLY protein and its X-linked homolog SLX/SLXL1, and may be required for localization of SLX/SLY proteins in the spermatid nucleus and sex chromatin. Our data suggest that SSTY is a second MSYq factor involved in the control of XY gene expression during sperm differentiation. As Slx/Slxl1 and Sly genes have been shown to be involved in the XY intra-genomic conflict, which affects the offspring sex ratio, Ssty may constitute another player in this conflict.


Asunto(s)
Proteínas/genética , Proteínas/metabolismo , Cromatina Sexual/genética , Cromatina Sexual/metabolismo , Secuencia de Aminoácidos , Animales , Núcleo Celular/metabolismo , Epigénesis Genética , Femenino , Regulación de la Expresión Génica , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Datos de Secuencia Molecular , Proteínas Nucleares/deficiencia , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Homología de Secuencia de Aminoácido , Espermátides/metabolismo , Espermatogénesis/genética , Cromosoma X/genética , Cromosoma Y/genética
5.
PLoS Genet ; 9(6): e1003545, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23825959

RESUMEN

An essential feature of meiosis is Spo11 catalysis of programmed DNA double strand breaks (DSBs). Evidence suggests that the number of DSBs generated per meiosis is genetically determined and that this ability to maintain a pre-determined DSB level, or "DSB homeostasis", might be a property of the meiotic program. Here, we present direct evidence that Rec114, an evolutionarily conserved essential component of the meiotic DSB-machinery, interacts with DSB hotspot DNA, and that Tel1 and Mec1, the budding yeast ATM and ATR, respectively, down-regulate Rec114 upon meiotic DSB formation through phosphorylation. Mimicking constitutive phosphorylation reduces the interaction between Rec114 and DSB hotspot DNA, resulting in a reduction and/or delay in DSB formation. Conversely, a non-phosphorylatable rec114 allele confers a genome-wide increase in both DSB levels and in the interaction between Rec114 and the DSB hotspot DNA. These observations strongly suggest that Tel1 and/or Mec1 phosphorylation of Rec114 following Spo11 catalysis down-regulates DSB formation by limiting the interaction between Rec114 and DSB hotspots. We also present evidence that Ndt80, a meiosis specific transcription factor, contributes to Rec114 degradation, consistent with its requirement for complete cessation of DSB formation. Loss of Rec114 foci from chromatin is associated with homolog synapsis but independent of Ndt80 or Tel1/Mec1 phosphorylation. Taken together, we present evidence for three independent ways of regulating Rec114 activity, which likely contribute to meiotic DSBs-homeostasis in maintaining genetically determined levels of breaks.


Asunto(s)
Roturas del ADN de Doble Cadena , Péptidos y Proteínas de Señalización Intracelular/genética , Meiosis , Proteínas Serina-Treonina Quinasas/genética , Recombinasas/genética , Proteínas de Saccharomyces cerevisiae/genética , Cromatina , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Regulación hacia Abajo , Endodesoxirribonucleasas/genética , Endodesoxirribonucleasas/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Recombinasas/metabolismo , Recombinación Genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Complejo Sinaptonémico/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
6.
PLoS Genet ; 9(4): e1003416, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23593021

RESUMEN

During the first meiotic prophase, programmed DNA double-strand breaks (DSBs) are distributed non randomly at hotspots along chromosomes, to initiate recombination. In all organisms, more DSBs are formed than crossovers (CO), the repair product that creates a physical link between homologs and allows their correct segregation. It is not known whether all DSB hotspots are also CO hotspots or if the CO/DSB ratio varies with the chromosomal location. Here, we investigated the variations in the CO/DSB ratio by mapping genome-wide the binding sites of the Zip3 protein during budding yeast meiosis. We show that Zip3 associates with DSB sites that are engaged in repair by CO, and Zip3 enrichment at DSBs reflects the DSB tendency to be repaired by CO. Moreover, the relative amount of Zip3 per DSB varies with the chromosomal location, and specific chromosomal features are associated with high or low Zip3 per DSB. This work shows that DSB hotspots are not necessarily CO hotspots and suggests that different categories of DSB sites may fulfill different functions.


Asunto(s)
Intercambio Genético , Recombinación Homóloga , Meiosis/genética , Proteínas de Saccharomyces cerevisiae , Ubiquitina-Proteína Ligasas , Cromosomas Fúngicos/genética , Roturas del ADN de Doble Cadena , Reparación del ADN/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo
7.
Mol Cell ; 49(1): 43-54, 2013 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-23246437

RESUMEN

Meiotic chromosomes are organized into arrays of loops that are anchored to the chromosome axis structure. Programmed DNA double-strand breaks (DSBs) that initiate meiotic recombination, catalyzed by Spo11 and accessory DSB proteins, form in loop sequences in promoters, whereas the DSB proteins are located on chromosome axes. Mechanisms bridging these two chromosomal regions for DSB formation have remained elusive. Here we show that Spp1, a conserved member of the histone H3K4 methyltransferase Set1 complex, is required for normal levels of DSB formation and is associated with chromosome axes during meiosis, where it physically interacts with the Mer2 DSB protein. The PHD finger module of Spp1, which reads H3K4 methylation close to promoters, promotes DSB formation by tethering these regions to chromosome axes and activating cleavage by the DSB proteins. This paper provides the molecular mechanism linking DSB sequences to chromosome axes and explains why H3K4 methylation is important for meiotic recombination.


Asunto(s)
Cromosomas Fúngicos/metabolismo , Roturas del ADN de Doble Cadena , Proteínas de Unión al ADN/metabolismo , N-Metiltransferasa de Histona-Lisina/metabolismo , Histonas/metabolismo , Meiosis , Regiones Promotoras Genéticas , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/fisiología , Proteínas de Unión al ADN/genética , Endodesoxirribonucleasas/metabolismo , N-Metiltransferasa de Histona-Lisina/genética , Metilación , Unión Proteica , Procesamiento Proteico-Postraduccional , Estructura Terciaria de Proteína , ARN Polimerasa II/metabolismo , Recombinación Genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Eliminación de Secuencia
8.
Exp Cell Res ; 318(12): 1347-52, 2012 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-22487095

RESUMEN

A key step for the success of meiosis is programmed homologous recombination, during which crossovers, or exchange of chromosome arms, take place. Crossovers increase genetic diversity but their main function is to ensure accurate chromosome segregation. Defects in crossover number and position produce aneuploidies that represent the main cause of miscarriages and chromosomal abnormalities such as Down's syndrome. Recombination is initiated by the formation of programmed double strand breaks (DSBs), which occur preferentially at places called DSB hotspots. Among all DSBs generated, only a small fraction is repaired by crossover, the other being repaired by other homologous recombination pathways. Crossover maps have been generated in a number of organisms, defining crossover hotspots. With the availability of genome-wide maps of DSBs as well as the ability to measure genetically the repair outcome at several hotspots, it is becoming more and more clear that not all DSB hotspots behave the same for crossover formation, suggesting that chromosomal features distinguish different types of hotspots.


Asunto(s)
Intercambio Genético/genética , Roturas del ADN de Doble Cadena , Recombinación Homóloga/fisiología , Meiosis/genética , Animales , Mapeo Cromosómico , Segregación Cromosómica/genética , Segregación Cromosómica/fisiología , Intercambio Genético/fisiología , Reparación del ADN/genética , Reparación del ADN/fisiología , Recombinación Homóloga/genética , Humanos , Modelos Biológicos
9.
Mutat Res ; 692(1-2): 34-41, 2010 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-20696178

RESUMEN

Rufloxacin (RFX) is an antibacterial fluoroquinolone that exhibits UVA photosensitization properties. Photosensitization reactions lead to the formation of oxidative damage, mainly via singlet oxygen. Here we explore the phototoxic and photomutagenic potency of RFX using a panel of yeast (Saccharomyces cerevisiae) mutants affected in different DNA repair pathways. Yeast mutants provide a sensitive tool to identify the photodamage and the DNA repair pathways that cope with it. Cell viability test at increasing dose of UVA shows that both the DNA repair deficient and wild type cells are equally sensitive to RFX-induced photosensitization, demonstrating that phototoxic effect is not due to DNA injury. Photomutagenicity of RFX is evaluated by measuring the frequency of forward Can(R) mutations. The mutation induction is low in wild type cells. A high increase in mutation frequency is observed in strains affected in Ogg1 gene, compared to wild type and other base excision repair deficient strains. The mutation spectrum photomediated by RFX in wild type cells reveals a bias in favour of GC>TA transversions, whereas transition and frameshift mutations are less represented. Altogether data demonstrates that 8-oxo-7,8-dihydroguanine (8-oxoGua) is by far the major DNA damage produced by RFX photosensitization, leading to mutagenesis. We also explore the role played by DNA mismatch repair, translesion synthesis and post-replication repair in the prevention of mutagenic effects due to RFX exposure. In addition, we show that most of RFX photodegradation products are not mutagenic. This study defines the phototoxic and photomutagenic properties of antibacterial RFX and point out possible unwanted side effects in skin under sunlight.


Asunto(s)
Antibacterianos/toxicidad , Fluoroquinolonas/toxicidad , Mutágenos/toxicidad , Trastornos por Fotosensibilidad/genética , Saccharomyces cerevisiae/efectos de los fármacos , Saccharomyces cerevisiae/genética , Reparación del ADN , Guanina/análogos & derivados , Guanina/biosíntesis , Mutagénesis , Rayos Ultravioleta/efectos adversos
10.
Appl Spectrosc ; 62(11): 1233-7, 2008 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-19007465

RESUMEN

The aim of this paper is to provide a general picture of the spectral characteristics of some polycyclic aromatic hydrocarbon (PAH) derivatives. A great deal of data concerning PAHs has been reported in the literature, but there is lack of comprehensiveness about important parameters in the same experimental conditions for their nitro (NO(2)) and amino (NH(2)) derivatives such as absorption and emission characteristics. Thus, important parameters such as the molar extinction coefficient, absorption maxima, fluorescence maxima, and fluorescence quantum yield are reported here. The efficiencies of the reduction of NO(2)-PAHs to their corresponding amino compounds were also verified by means of high-performance liquid chromatography (HPLC). This class of derivatives represents one of the most toxic groups of carcinogenic substances and therefore the data reported here should be useful for toxicological research.


Asunto(s)
Espectrometría de Masas/métodos , Hidrocarburos Policíclicos Aromáticos/análisis , Compuestos Policíclicos/análisis , Carcinógenos/análisis , Carcinógenos/química , Cromatografía Líquida de Alta Presión/métodos , Contaminantes Ambientales/análisis , Contaminantes Ambientales/química , Estructura Molecular , Nitrocompuestos/análisis , Nitrocompuestos/química , Oxidación-Reducción , Hidrocarburos Policíclicos Aromáticos/química
11.
Photochem Photobiol Sci ; 6(2): 181-9, 2007 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-17277842

RESUMEN

The fluoroquinolone Rufloxacin (RFX) is active as specific inhibitor of bacterial gyrase. The adverse effects of the photosensitization induced by fluoroquinolones are well known. A predominant type II photosensitizing activity of Rufloxacin has already been demonstrated on simpler models (free nucleosides, calf thymus DNA), whereas a cooperative mechanism was corroborated on more complex ones (plasmid and fibroblast). The purpose of this study is to examine the drug photocytoxicity in another complex cellular model, a wild-type eukaryotic fast-growing microorganism whose cultivation is cheap and easily managed, Saccharomyces cerevisiae. This work represents the first report of the potential photogenotoxicity of Rufloxacin. Particular emphasis was given to DNA modifications caused in yeast by the formation of Rufloxacin photomediated toxic species, such as hydrogen peroxide and formaldehyde. Drug phototoxicity on yeast was evaluated by measuring DNA fragmentation (single/double strand breaks) using single cell gel electrophoresis assay and 8-OH-dGuo, a DNA photooxidation biomarker, by HPLC-ECD. Cellular sensitivity was also assessed by cell viability test. The extra- and intracellular RFX concentration (as well as its main photoproduct) was verified by HPLC-MS, whereas the cytotoxic species were evaluated by colorimetric assays. The results confirm the phototoxicity of Rufloxacin on yeast cell and are in agreement with those previously obtained with human fibroblast and with simpler models used recently, and provide a clear link between DNA photosensitization and overall phototoxicity.


Asunto(s)
Fluoroquinolonas/farmacología , Fármacos Fotosensibilizantes/farmacología , Quinolonas/farmacología , Saccharomyces cerevisiae/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Cromatografía Líquida de Alta Presión/métodos , Fragmentación del ADN/efectos de los fármacos , Fragmentación del ADN/efectos de la radiación , Relación Dosis-Respuesta a Droga , Relación Dosis-Respuesta en la Radiación , Fluoroquinolonas/química , Fluoroquinolonas/efectos de la radiación , Formaldehído/química , Formaldehído/farmacología , Peróxido de Hidrógeno/química , Peróxido de Hidrógeno/farmacología , Espectrometría de Masas/métodos , Estructura Molecular , Fármacos Fotosensibilizantes/química , Fármacos Fotosensibilizantes/efectos de la radiación , Quinolonas/química , Quinolonas/efectos de la radiación , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/efectos de la radiación , Sensibilidad y Especificidad , Rayos Ultravioleta
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...