Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 73
Filtrar
1.
Stem Cell Reports ; 2024 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-38942030

RESUMEN

Genetic differences between pluripotent stem cell lines cause variable activity of extracellular signaling pathways, limiting reproducibility of directed differentiation protocols. Here we used human embryonic stem cells (hESCs) to interrogate how exogenous factors modulate endogenous signaling events during specification of foregut endoderm lineages. We find that transforming growth factor ß1 (TGF-ß1) activates a putative human OTX2/LHX1 gene regulatory network which promotes anterior fate by antagonizing endogenous Wnt signaling. In contrast to Porcupine inhibition, TGF-ß1 effects cannot be reversed by exogenous Wnt ligands, suggesting that induction of SHISA proteins and intracellular accumulation of Fzd receptors render TGF-ß1-treated cells refractory to Wnt signaling. Subsequently, TGF-ß1-mediated inhibition of BMP and Wnt signaling suppresses liver fate and promotes pancreas fate. Furthermore, combined TGF-ß1 treatment and Wnt inhibition during pancreatic specification reproducibly and robustly enhance INSULIN+ cell yield across hESC lines. This modification of widely used differentiation protocols will enhance pancreatic ß cell yield for cell-based therapeutic applications.

2.
Genes Dev ; 37(11-12): 451-453, 2023 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-37399332

RESUMEN

The homeodomain transcription factor (TF) Nkx2.2 governs crucial cell fate decisions in several developing organs, including the central nervous system (CNS), pancreas, and intestine. How Nkx2.2 regulates unique targets in these different systems to impact their individual transcriptional programs remains unclear. In this issue of Genes & Development Abarinov and colleagues (pp. 490-504) generated and analyzed mice in which the Nkx2.2 SD is mutated and found that the SD is required for normal pancreatic islet differentiation but dispensable for most aspects of neuronal differentiation.


Asunto(s)
Proteínas de Homeodominio , Islotes Pancreáticos , Ratones , Animales , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Proteína Homeobox Nkx-2.2 , Proteínas de Pez Cebra/genética , Islotes Pancreáticos/metabolismo , Diferenciación Celular/genética , Neuronas/metabolismo , Regulación del Desarrollo de la Expresión Génica
3.
Nat Commun ; 14(1): 348, 2023 01 21.
Artículo en Inglés | MEDLINE | ID: mdl-36681690

RESUMEN

The Notch ligands Jag1 and Dll1 guide differentiation of multipotent pancreatic progenitor cells (MPCs) into unipotent pro-acinar cells (PACs) and bipotent duct/endocrine progenitors (BPs). Ligand-mediated trans-activation of Notch receptors induces oscillating expression of the transcription factor Hes1, while ligand-receptor cis-interaction indirectly represses Hes1 activation. Despite Dll1 and Jag1 both displaying cis- and trans-interactions, the two mutants have different phenotypes for reasons not fully understood. Here, we present a mathematical model that recapitulates the spatiotemporal differentiation of MPCs into PACs and BPs. The model correctly captures cell fate changes in Notch pathway knockout mice and small molecule inhibitor studies, and a requirement for oscillatory Hes1 expression to maintain the multipotent state. Crucially, the model entails cell-autonomous attenuation of Notch signaling by Jag1-mediated cis-inhibition in MPC differentiation. The model sheds light on the underlying mechanisms, suggesting that cis-interaction is crucial for exiting the multipotent state, while trans-interaction is required for adopting the bipotent fate.


Asunto(s)
Organogénesis , Receptores Notch , Animales , Ratones , Proteínas de Unión al Calcio/genética , Proteínas de Unión al Calcio/metabolismo , Diferenciación Celular/fisiología , Ligandos , Ratones Noqueados , Receptores Notch/genética , Receptores Notch/metabolismo
4.
Nat Commun ; 13(1): 715, 2022 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-35132078

RESUMEN

Organs are anatomically compartmentalised to cater for specialised functions. In the small intestine (SI), regionalisation enables sequential processing of food and nutrient absorption. While several studies indicate the critical importance of non-epithelial cells during development and homeostasis, the extent to which these cells contribute to regionalisation during morphogenesis remains unexplored. Here, we identify a mesenchymal-epithelial crosstalk that shapes the developing SI during late morphogenesis. We find that subepithelial mesenchymal cells are characterised by gradients of factors supporting Wnt signalling and stimulate epithelial growth in vitro. Such a gradient impacts epithelial gene expression and regional villus formation along the anterior-posterior axis of the SI. Notably, we further provide evidence that Wnt signalling directly regulates epithelial expression of Sonic Hedgehog (SHH), which, in turn, acts on mesenchymal cells to drive villi formation. Taken together our results uncover a mechanistic link between Wnt and Hedgehog signalling across different cellular compartments that is central for anterior-posterior regionalisation and correct formation of the SI.


Asunto(s)
Proteínas Hedgehog/metabolismo , Mucosa Intestinal/metabolismo , Intestino Delgado/embriología , Células Madre Mesenquimatosas/metabolismo , Vía de Señalización Wnt/fisiología , Animales , Linaje de la Célula , Regulación del Desarrollo de la Expresión Génica , Proteínas Hedgehog/genética , Mucosa Intestinal/citología , Mucosa Intestinal/embriología , Intestino Delgado/citología , Intestino Delgado/metabolismo , Células Madre Mesenquimatosas/citología , Ratones , Morfogénesis , Receptor alfa de Factor de Crecimiento Derivado de Plaquetas/metabolismo , Vía de Señalización Wnt/genética
5.
Mol Metab ; 53: 101313, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34352411

RESUMEN

OBJECTIVE: Mice lacking the bHLH transcription factor (TF) Neurog3 do not form pancreatic islet cells, including insulin-secreting beta cells, the absence of which leads to diabetes. In humans, homozygous mutations of NEUROG3 manifest with neonatal or childhood diabetes. Despite this critical role in islet cell development, the precise function of and downstream genetic programs regulated directly by NEUROG3 remain elusive. Therefore, we mapped genome-wide NEUROG3 occupancy in human induced pluripotent stem cell (hiPSC)-derived endocrine progenitors and determined NEUROG3 dependency of associated genes to uncover direct targets. METHODS: We generated a novel hiPSC line (NEUROG3-HA-P2A-Venus) where NEUROG3 is HA-tagged and fused to a self-cleaving fluorescent VENUS reporter. We used the CUT&RUN technique to map NEUROG3 occupancy and epigenetic marks in pancreatic endocrine progenitors (PEP) that were differentiated from this hiPSC line. We integrated NEUROG3 occupancy data with chromatin status and gene expression in PEPs as well as their NEUROG3-dependence. In addition, we investigated whether NEUROG3 binds type 2 diabetes mellitus (T2DM)-associated variants at the PEP stage. RESULTS: CUT&RUN revealed a total of 863 NEUROG3 binding sites assigned to 1263 unique genes. NEUROG3 occupancy was found at promoters as well as at distant cis-regulatory elements that frequently overlapped within PEP active enhancers. De novo motif analyses defined a NEUROG3 consensus binding motif and suggested potential co-regulation of NEUROG3 target genes by FOXA or RFX transcription factors. We found that 22% of the genes downregulated in NEUROG3-/- PEPs, and 10% of genes enriched in NEUROG3-Venus positive endocrine cells were bound by NEUROG3 and thus likely to be directly regulated. NEUROG3 binds to 138 transcription factor genes, some with important roles in islet cell development or function, such as NEUROD1, PAX4, NKX2-2, SOX4, MLXIPL, LMX1B, RFX3, and NEUROG3 itself, and many others with unknown islet function. Unexpectedly, we uncovered that NEUROG3 targets genes critical for insulin secretion in beta cells (e.g., GCK, ABCC8/KCNJ11, CACNA1A, CHGA, SCG2, SLC30A8, and PCSK1). Thus, analysis of NEUROG3 occupancy suggests that the transient expression of NEUROG3 not only promotes islet destiny in uncommitted pancreatic progenitors, but could also initiate endocrine programs essential for beta cell function. Lastly, we identified eight T2DM risk SNPs within NEUROG3-bound regions. CONCLUSION: Mapping NEUROG3 genome occupancy in PEPs uncovered unexpectedly broad, direct control of the endocrine genes, raising novel hypotheses on how this master regulator controls islet and beta cell differentiation.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Sistema Endocrino/metabolismo , Redes Reguladoras de Genes/genética , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Páncreas/metabolismo , Células Cultivadas , Humanos
6.
Cell Stem Cell ; 28(11): 1907-1921.e8, 2021 11 04.
Artículo en Inglés | MEDLINE | ID: mdl-34343491

RESUMEN

In the liver, ductal cells rarely proliferate during homeostasis but do so transiently after tissue injury. These cells can be expanded as organoids that recapitulate several of the cell-autonomous mechanisms of regeneration but lack the stromal interactions of the native tissue. Here, using organoid co-cultures that recapitulate the ductal-to-mesenchymal cell architecture of the portal tract, we demonstrate that a subpopulation of mouse periportal mesenchymal cells exerts dual control on proliferation of the epithelium. Ductal cell proliferation is either induced and sustained or, conversely, completely abolished, depending on the number of direct mesenchymal cell contacts, through a mechanism mediated, at least in part, by Notch signaling. Our findings expand the concept of the cellular niche in epithelial tissues, whereby not only soluble factors but also cell-cell contacts are the key regulatory cues involved in the control of cellular behaviors, suggesting a critical role for cell-cell contacts during regeneration.


Asunto(s)
Células Epiteliales , Mesodermo , Animales , Proliferación Celular , Epitelio , Hígado , Ratones
7.
Development ; 147(12)2020 06 22.
Artículo en Inglés | MEDLINE | ID: mdl-32467237

RESUMEN

Thymus function depends on the epithelial compartment of the thymic stroma. Cortical thymic epithelial cells (cTECs) regulate T cell lineage commitment and positive selection, while medullary (m) TECs impose central tolerance on the T cell repertoire. During thymus organogenesis, these functionally distinct sub-lineages are thought to arise from a common thymic epithelial progenitor cell (TEPC). However, the mechanisms controlling cTEC and mTEC production from the common TEPC are not understood. Here, we show that emergence of the earliest mTEC lineage-restricted progenitors requires active NOTCH signaling in progenitor TEC and that, once specified, further mTEC development is NOTCH independent. In addition, we demonstrate that persistent NOTCH activity favors maintenance of undifferentiated TEPCs at the expense of cTEC differentiation. Finally, we uncover a cross-regulatory relationship between NOTCH and FOXN1, a master regulator of TEC differentiation. These data establish NOTCH as a potent regulator of TEPC and mTEC fate during fetal thymus development, and are thus of high relevance to strategies aimed at generating/regenerating functional thymic tissue in vitro and in vivo.


Asunto(s)
Desarrollo Embrionario/genética , Receptores Notch/metabolismo , Timo/metabolismo , Animales , Diferenciación Celular , Linaje de la Célula , Células Epiteliales/citología , Células Epiteliales/metabolismo , Femenino , Factores de Transcripción Forkhead/deficiencia , Factores de Transcripción Forkhead/genética , Factores de Transcripción Forkhead/metabolismo , Mutación con Ganancia de Función , Regulación del Desarrollo de la Expresión Génica , Proteína de Unión a la Señal Recombinante J de las Inmunoglobulinas/deficiencia , Proteína de Unión a la Señal Recombinante J de las Inmunoglobulinas/genética , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , FN-kappa B/metabolismo , Organogénesis , Receptores Notch/genética , Transducción de Señal , Células Madre/citología , Células Madre/metabolismo , Timo/citología , Timo/crecimiento & desarrollo
8.
Dev Cell ; 52(6): 731-747.e8, 2020 03 23.
Artículo en Inglés | MEDLINE | ID: mdl-32059775

RESUMEN

Notch signaling controls proliferation of multipotent pancreatic progenitor cells (MPCs) and their segregation into bipotent progenitors (BPs) and unipotent pro-acinar cells (PACs). Here, we showed that fast ultradian oscillations of the ligand Dll1 and the transcriptional effector Hes1 were crucial for MPC expansion, and changes in Hes1 oscillation parameters were associated with selective adoption of BP or PAC fate. Conversely, Jag1, a uniformly expressed ligand, restrained MPC growth. However, when its expression later segregated to PACs, Jag1 became critical for the specification of all but the most proximal BPs, and BPs were entirely lost in Jag1; Dll1 double mutants. Anatomically, ductal morphogenesis and organ architecture are minimally perturbed in Jag1 mutants until later stages, when ductal remodeling fails, and signs of acinar-to-ductal metaplasia appear. Our study thus uncovers that oscillating Notch activity in the developing pancreas, modulated by Jag1, is required to coordinate MPC growth and fate.


Asunto(s)
Diferenciación Celular , Células Madre Embrionarias/metabolismo , Proteína Jagged-1/metabolismo , Páncreas/citología , Transducción de Señal , Animales , Proteínas de Unión al Calcio/genética , Proteínas de Unión al Calcio/metabolismo , Linaje de la Célula , Células Madre Embrionarias/citología , Femenino , Regulación del Desarrollo de la Expresión Génica , Proteína Jagged-1/genética , Masculino , Ratones , Ratones Endogámicos C57BL , Mutación , Páncreas/embriología , Páncreas/metabolismo , Periodicidad , Receptores Notch/genética , Receptores Notch/metabolismo , Factor de Transcripción HES-1/genética , Factor de Transcripción HES-1/metabolismo
9.
Semin Cell Dev Biol ; 92: 77-88, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-30142440

RESUMEN

The pancreas is a compound gland comprised of both exocrine acinar and duct cells as well as endocrine islet cells. Most notable amongst the latter are the insulin-synthesizing ß-cells, loss or dysfunction of which manifests in diabetes mellitus. All exocrine and endocrine cells derive from multipotent pancreatic progenitor cells arising from the primitive gut epithelium via inductive interactions with adjacent mesodermal tissues. Research in the last two decades has revealed the identity of many of these extrinsic cues and they include signaling molecules used in many other developmental contexts such as retinoic acid, fibroblast growth factors, and members of the TGF-ß superfamily. As important as these inductive cues is the absence of other signaling molecules such as hedgehog family members. Much has been learned about the interactions of extrinsic factors with fate regulators intrinsic to the pancreatic endoderm. This new knowledge has had tremendous impact on the development of directed differentiation protocols for converting pluripotent stem cells to ß-cells in vitro.


Asunto(s)
Mesodermo/embriología , Páncreas/embriología , Animales , Humanos , Ratones
10.
Nature ; 564(7734): 114-118, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30487608

RESUMEN

The pancreas originates from two epithelial evaginations of the foregut, which consist of multipotent epithelial progenitors that organize into a complex tubular epithelial network. The trunk domain of each epithelial branch consists of bipotent pancreatic progenitors (bi-PPs) that give rise to both duct and endocrine lineages, whereas the tips give rise to acinar cells1. Here we identify the extrinsic and intrinsic signalling mechanisms that coordinate the fate-determining transcriptional events underlying these lineage decisions1,2. Single-cell analysis of pancreatic bipotent pancreatic progenitors derived from human embryonic stem cells reveal that cell confinement is a prerequisite for endocrine specification, whereas spreading drives the progenitors towards a ductal fate. Mechanistic studies identify the interaction of extracellular matrix (ECM) with integrin α5 as the extracellular cue that cell-autonomously, via the F-actin-YAP1-Notch mechanosignalling axis, controls the fate of bipotent pancreatic progenitors. Whereas ECM-integrin α5 signalling promotes differentiation towards the duct lineage, endocrinogenesis is stimulated when this signalling cascade is disrupted. This cascade can be disrupted pharmacologically or genetically to convert bipotent pancreatic progenitors derived from human embryonic stem cells to hormone-producing islet cells. Our findings identify the cell-extrinsic and intrinsic mechanotransduction pathway that acts as gatekeeper in the fate decisions of bipotent pancreatic progenitors in the developing pancreas.


Asunto(s)
Diferenciación Celular , Linaje de la Célula , Integrinas/metabolismo , Organogénesis , Páncreas/citología , Transducción de Señal , Células Madre/citología , Células Madre/metabolismo , Actinas/metabolismo , Proteínas Adaptadoras Transductoras de Señales/deficiencia , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Proteínas de Ciclo Celular , Linaje de la Célula/genética , Forma de la Célula , Proteínas de Unión al ADN/metabolismo , Elementos de Facilitación Genéticos/genética , Femenino , Fibronectinas/metabolismo , Regulación del Desarrollo de la Expresión Génica , Humanos , Integrina alfa5beta1/metabolismo , Masculino , Ratones , Proteínas Musculares/metabolismo , Páncreas/embriología , Páncreas/metabolismo , Fosfoproteínas/deficiencia , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Receptor Notch1/genética , Análisis de la Célula Individual , Factores de Transcripción de Dominio TEA , Factor de Transcripción HES-1/genética , Factores de Transcripción/metabolismo , Transcripción Genética , Transgenes , Proteínas Señalizadoras YAP
11.
Development ; 145(17)2018 09 03.
Artículo en Inglés | MEDLINE | ID: mdl-30093553

RESUMEN

Mutations in Hes1, a target gene of the Notch signalling pathway, lead to ectopic pancreas by a poorly described mechanism. Here, we use genetic inactivation of Hes1 combined with lineage tracing and live imaging to reveal an endodermal requirement for Hes1, and show that ectopic pancreas tissue is derived from the dorsal pancreas primordium. RNA-seq analysis of sorted E10.5 Hes1+/+ and Hes1-/- Pdx1-GFP+ cells suggested that upregulation of endocrine lineage genes in Hes1-/- embryos was the major defect and, accordingly, early pancreas morphogenesis was normalized, and the ectopic pancreas phenotype suppressed, in Hes1-/-Neurog3-/- embryos. In Mib1 mutants, we found a near total depletion of dorsal progenitors, which was replaced by an anterior Gcg+ extension. Together, our results demonstrate that aberrant morphogenesis is the cause of ectopic pancreas and that a part of the endocrine differentiation program is mechanistically involved in the dysgenesis. Our results suggest that the ratio of endocrine lineage to progenitor cells is important for morphogenesis and that a strong endocrinogenic phenotype without complete progenitor depletion, as seen in Hes1 mutants, provokes an extreme dysgenesis that causes ectopic pancreas.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Coristoma/genética , Morfogénesis/genética , Proteínas del Tejido Nervioso/genética , Páncreas/anomalías , Páncreas/embriología , Factor de Transcripción HES-1/genética , Animales , Endodermo/metabolismo , Regulación del Desarrollo de la Expresión Génica/genética , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ubiquitina-Proteína Ligasas/genética
12.
Cell Rep ; 24(3): 766-780, 2018 07 17.
Artículo en Inglés | MEDLINE | ID: mdl-30021172

RESUMEN

Hematopoietic stem cells (HSCs) are considered a heterogeneous cell population. To further resolve the HSC compartment, we characterized a retinoic acid (RA) reporter mouse line. Sub-fractionation of the HSC compartment in RA-CFP reporter mice demonstrated that RA-CFP-dim HSCs were largely non-proliferative and displayed superior engraftment potential in comparison with RA-CFP-bright HSCs. Gene expression analysis demonstrated higher expression of RA-target genes in RA-CFP-dim HSCs, in contrast to the RA-CFP reporter expression, but both RA-CFP-dim and RA-CFP-bright HSCs responded efficiently to RA in vitro. Single-cell RNA sequencing (RNA-seq) of >1,200 HSCs showed that differences in cell cycle activity constituted the main driver of transcriptional heterogeneity in HSCs. Moreover, further analysis of the single-cell RNA-seq data revealed that stochastic low-level expression of distinct lineage-affiliated transcriptional programs is a common feature of HSCs. Collectively, this work demonstrates the utility of the RA-CFP reporter line as a tool for the isolation of superior HSCs.


Asunto(s)
Compartimento Celular , Ciclo Celular/genética , Células Madre Hematopoyéticas/citología , Células Madre Hematopoyéticas/metabolismo , Transcripción Genética , Animales , Ciclo Celular/efectos de los fármacos , Regulación de la Expresión Génica/efectos de los fármacos , Genes Reporteros , Genoma , Hematopoyesis/efectos de los fármacos , Hematopoyesis/genética , Trasplante de Células Madre Hematopoyéticas , Células Madre Hematopoyéticas/efectos de los fármacos , Proteínas Luminiscentes/metabolismo , Ratones , Transducción de Señal/efectos de los fármacos , Transcripción Genética/efectos de los fármacos , Transcriptoma/genética , Tretinoina/farmacología
13.
Diabetes ; 67(1): 58-70, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-28986398

RESUMEN

Inhibition of notch signaling is known to induce differentiation of endocrine cells in zebrafish and mouse. After performing an unbiased in vivo screen of ∼2,200 small molecules in zebrafish, we identified an inhibitor of Cdk5 (roscovitine), which potentiated the formation of ß-cells along the intrapancreatic duct during concurrent inhibition of notch signaling. We confirmed and characterized the effect with a more selective Cdk5 inhibitor, (R)-DRF053, which specifically increased the number of duct-derived ß-cells without affecting their proliferation. By duct-specific overexpression of the endogenous Cdk5 inhibitors Cdk5rap1 or Cdkal1 (which previously have been linked to diabetes in genome-wide association studies), as well as deleting cdk5, we validated the role of chemical Cdk5 inhibition in ß-cell differentiation by genetic means. Moreover, the cdk5 mutant zebrafish displayed an increased number of ß-cells independently of inhibition of notch signaling, in both the basal state and during ß-cell regeneration. Importantly, the effect of Cdk5 inhibition to promote ß-cell formation was conserved in mouse embryonic pancreatic explants, adult mice with pancreatic ductal ligation injury, and human induced pluripotent stem (iPS) cells. Thus, we have revealed a previously unknown role of Cdk5 as an endogenous suppressor of ß-cell differentiation and thereby further highlighted its importance in diabetes.


Asunto(s)
Quinasa 5 Dependiente de la Ciclina/metabolismo , Células Secretoras de Insulina/citología , Células Secretoras de Insulina/metabolismo , Conductos Pancreáticos/citología , Células Madre/citología , Células Madre/metabolismo , Animales , Diferenciación Celular/genética , Diferenciación Celular/fisiología , Quinasa 5 Dependiente de la Ciclina/genética , Estudio de Asociación del Genoma Completo , Genotipo , Larva/citología , Reacción en Cadena en Tiempo Real de la Polimerasa , Transducción de Señal/fisiología , Pez Cebra/genética , Pez Cebra/metabolismo , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo
14.
Development ; 144(21): 3894-3906, 2017 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-28951435

RESUMEN

The establishment of the anteroposterior (AP) axis is a crucial step during animal embryo development. In mammals, genetic studies have shown that this process relies on signals spatiotemporally deployed in the extra-embryonic tissues that locate the position of the head and the onset of gastrulation, marked by T/Brachyury (T/Bra) at the posterior of the embryo. Here, we use gastruloids, mESC-based organoids, as a model system with which to study this process. We find that gastruloids localise T/Bra expression to one end and undergo elongation similar to the posterior region of the embryo, suggesting that they develop an AP axis. This process relies on precisely timed interactions between Wnt/ß-catenin and Nodal signalling, whereas BMP signalling is dispensable. Additionally, polarised T/Bra expression occurs in the absence of extra-embryonic tissues or localised sources of signals. We suggest that the role of extra-embryonic tissues in the mammalian embryo might not be to induce the axes but to bias an intrinsic ability of the embryo to initially break symmetry. Furthermore, we suggest that Wnt signalling has a separable activity involved in the elongation of the axis.


Asunto(s)
Tipificación del Cuerpo , Polaridad Celular , Embrión de Mamíferos/metabolismo , Membranas Extraembrionarias/metabolismo , Gástrula/metabolismo , Organoides/embriología , Organoides/metabolismo , Transducción de Señal , Animales , Biomarcadores/metabolismo , Regulación del Desarrollo de la Expresión Génica , Proteínas Fluorescentes Verdes/metabolismo , Ratones , Factores de Tiempo , Factores de Transcripción/metabolismo , Vía de Señalización Wnt
16.
Artículo en Inglés | MEDLINE | ID: mdl-27911036

RESUMEN

Embryoid bodies (EBs) have been popular in vitro differentiation models for pluripotent stem cells for more than five decades. Initially, defined as aggregates formed by embryonal carcinoma cells, EBs gained more prominence after the derivation of karyotypically normal embryonic stem cells from early mouse blastocysts. In many cases, formation of EBs constitutes an important initial step in directed differentiation protocols aimed at generated specific cell types from undifferentiated stem cells. Indeed state-of-the-art protocols for directed differentiation of cardiomyocytes still rely on this initial EB step. Analyses of spontaneous differentiation of embryonic stem cells in EBs have yielded important insights into the molecules that direct primitive endoderm differentiation and many of the lessons we have learned about the signals and transcription factors governing this differentiation event is owed to EB models, which later were extensively validated in studies of early mouse embryos. EBs show a degree of self-organization that mimics some aspects of early embryonic development, but with important exceptions. Recent studies that employ modern signaling reporters and tracers of lineage commitment have revealed both the strengths and the weaknesses of EBs as a model of embryonic axis formation. In this review, we discuss the history, application, and future potential of EBs as an experimental model. WIREs Dev Biol 2017, 6:e259. doi: 10.1002/wdev.259 For further resources related to this article, please visit the WIREs website.


Asunto(s)
Diferenciación Celular , Linaje de la Célula , Cuerpos Embrioides/citología , Cuerpos Embrioides/fisiología , Desarrollo Embrionario/fisiología , Animales , Humanos
17.
Development ; 142(13): 2291-303, 2015 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-25995356

RESUMEN

Notochord-derived Sonic Hedgehog (Shh) is essential for dorsoventral patterning of the overlying neural tube. Increasing concentration and duration of Shh signal induces progenitors to acquire progressively more ventral fates. We show that Notch signalling augments the response of neuroepithelial cells to Shh, leading to the induction of higher expression levels of the Shh target gene Ptch1 and subsequently induction of more ventral cell fates. Furthermore, we demonstrate that activated Notch1 leads to pronounced accumulation of Smoothened (Smo) within primary cilia and elevated levels of full-length Gli3. Finally, we show that Notch activity promotes longer primary cilia both in vitro and in vivo. Strikingly, these Notch-regulated effects are Shh independent. These data identify Notch signalling as a novel modulator of Shh signalling that acts mechanistically via regulation of ciliary localisation of key components of its transduction machinery.


Asunto(s)
Proteínas Aviares/metabolismo , Cilios/metabolismo , Proteínas Hedgehog/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Receptores Notch/metabolismo , Transducción de Señal , Animales , Biomarcadores/metabolismo , Linaje de la Célula , Embrión de Pollo , Fibroblastos/metabolismo , Regulación del Desarrollo de la Expresión Génica , Factores de Transcripción de Tipo Kruppel/metabolismo , Ratones , Neuronas Motoras/metabolismo , Células 3T3 NIH , Proteínas del Tejido Nervioso/metabolismo , Placa Neural/metabolismo , Células-Madre Neurales/citología , Células-Madre Neurales/metabolismo , Tubo Neural/metabolismo , Notocorda/metabolismo , Receptores Notch/antagonistas & inhibidores , Receptor Smoothened , Proteína Gli3 con Dedos de Zinc
18.
Dev Biol ; 386(2): 340-57, 2014 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-24370451

RESUMEN

The basic helix-loop-helix (bHLH) transcriptional activator Ptf1a determines inhibitory GABAergic over excitatory glutamatergic neuronal cell fate in progenitors of the vertebrate dorsal spinal cord, cerebellum and retina. In an in situ hybridization expression survey of PR domain containing genes encoding putative chromatin-remodeling zinc finger transcription factors in Xenopus embryos, we identified Prdm13 as a histone methyltransferase belonging to the Ptf1a synexpression group. Gain and loss of Ptf1a function analyses in both frog and mice indicates that Prdm13 is positively regulated by Ptf1a and likely constitutes a direct transcriptional target. We also showed that this regulation requires the formation of the Ptf1a-Rbp-j complex. Prdm13 knockdown in Xenopus embryos and in Ptf1a overexpressing ectodermal explants lead to an upregulation of Tlx3/Hox11L2, which specifies a glutamatergic lineage and a reduction of the GABAergic neuronal marker Pax2. It also leads to an upregulation of Prdm13 transcription, suggesting an autonegative regulation. Conversely, in animal caps, Prdm13 blocks the ability of the bHLH factor Neurog2 to activate Tlx3. Additional gain of function experiments in the chick neural tube confirm that Prdm13 suppresses Tlx3(+)/glutamatergic and induces Pax2(+)/GABAergic neuronal fate. Thus, Prdm13 is a novel crucial component of the Ptf1a regulatory pathway that, by modulating the transcriptional activity of bHLH factors such as Neurog2, controls the balance between GABAergic and glutamatergic neuronal fate in the dorsal and caudal part of the vertebrate neural tube.


Asunto(s)
Diferenciación Celular/fisiología , Neuronas GABAérgicas/fisiología , Regulación del Desarrollo de la Expresión Génica/fisiología , N-Metiltransferasa de Histona-Lisina/metabolismo , Tubo Neural/embriología , Proteínas de Xenopus/metabolismo , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Embrión de Pollo , Cartilla de ADN/genética , Electroporación , Histona Metiltransferasas , N-Metiltransferasa de Histona-Lisina/genética , Inmunohistoquímica , Inmunoprecipitación , Hibridación in Situ , Ratones , Tubo Neural/citología , Factor de Transcripción PAX2/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Proteínas de Xenopus/genética , Xenopus laevis
20.
Dis Model Mech ; 5(6): 956-66, 2012 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-22888097

RESUMEN

Extracellular signals in development, physiology, homeostasis and disease often act by regulating transcription. Herein we describe a general method and specific resources for determining where and when such signaling occurs in live animals and for systematically comparing the timing and extent of different signals in different cellular contexts. We used recombinase-mediated cassette exchange (RMCE) to test the effect of successively deleting conserved genomic regions of the ubiquitously active Rosa26 promoter and substituting the deleted regions for regulatory sequences that respond to diverse extracellular signals. We thereby created an allelic series of embryonic stem cells and mice, each containing a signal-responsive sentinel with different fluorescent reporters that respond with sensitivity and specificity to retinoic acids, bone morphogenic proteins, activin A, Wnts or Notch, and that can be adapted to any pathway that acts via DNA elements.


Asunto(s)
Células Madre Embrionarias/metabolismo , Mutación/genética , Regiones Promotoras Genéticas , Transducción de Señal/genética , Transcripción Genética , Activinas/genética , Activinas/metabolismo , Animales , Secuencia de Bases , Proteínas Morfogenéticas Óseas/genética , Proteínas Morfogenéticas Óseas/metabolismo , Embrión de Mamíferos/efectos de los fármacos , Embrión de Mamíferos/metabolismo , Células Madre Embrionarias/efectos de los fármacos , Ingeniería Genética , Sitios Genéticos/genética , Humanos , Ratones , Datos de Secuencia Molecular , Proteínas/genética , ARN no Traducido , Ratas , Receptores Notch/genética , Receptores Notch/metabolismo , Recombinación Genética/genética , Elementos de Respuesta/genética , Eliminación de Secuencia/genética , Transducción de Señal/efectos de los fármacos , Transcripción Genética/efectos de los fármacos , Tretinoina/farmacología , Vía de Señalización Wnt/efectos de los fármacos , Vía de Señalización Wnt/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...