Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 102
Filtrar
1.
bioRxiv ; 2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38559194

RESUMEN

In placental females, one copy of the two X chromosomes is largely silenced during a narrow developmental time window, in a process mediated by the non-coding RNA Xist1. Here, we demonstrate that Xist can initiate X-chromosome inactivation (XCI) well beyond early embryogenesis. By modifying its endogenous level, we show that Xist has the capacity to actively silence genes that escape XCI both in neuronal progenitor cells (NPCs) and in vivo, in mouse embryos. We also show that Xist plays a direct role in eliminating TAD-like structures associated with clusters of escapee genes on the inactive X chromosome, and that this is dependent on Xist's XCI initiation partner, SPEN2. We further demonstrate that Xist's function in suppressing gene expression of escapees and topological domain formation is reversible for up to seven days post-induction, but that sustained Xist up-regulation leads to progressively irreversible silencing and CpG island DNA methylation of facultative escapees. Thus, the distinctive transcriptional and regulatory topologies of the silenced X chromosome is actively, directly - and reversibly - controlled by Xist RNA throughout life.

2.
Nat Commun ; 15(1): 3602, 2024 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-38684700

RESUMEN

Glioblastoma (GBM) is a highly lethal type of cancer. GBM recurrence following chemoradiation is typically attributed to the regrowth of invasive and resistant cells. Therefore, there is a pressing need to gain a deeper understanding of the mechanisms underlying GBM resistance to chemoradiation and its ability to infiltrate. Using a combination of transcriptomic, proteomic, and phosphoproteomic analyses, longitudinal imaging, organotypic cultures, functional assays, animal studies, and clinical data analyses, we demonstrate that chemoradiation and brain vasculature induce cell transition to a functional state named VC-Resist (vessel co-opting and resistant cell state). This cell state is midway along the transcriptomic axis between proneural and mesenchymal GBM cells and is closer to the AC/MES1-like state. VC-Resist GBM cells are highly vessel co-opting, allowing significant infiltration into the surrounding brain tissue and homing to the perivascular niche, which in turn induces even more VC-Resist transition. The molecular and functional characteristics of this FGFR1-YAP1-dependent GBM cell state, including resistance to DNA damage, enrichment in the G2M phase, and induction of senescence/stemness pathways, contribute to its enhanced resistance to chemoradiation. These findings demonstrate how vessel co-option, perivascular niche, and GBM cell plasticity jointly drive resistance to therapy during GBM recurrence.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Glioblastoma/metabolismo , Glioblastoma/patología , Glioblastoma/tratamiento farmacológico , Glioblastoma/genética , Humanos , Animales , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patología , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/genética , Línea Celular Tumoral , Ratones , Quimioradioterapia/métodos , Resistencia a Antineoplásicos , Regulación Neoplásica de la Expresión Génica , Tolerancia a Radiación , Proteínas Señalizadoras YAP/metabolismo , Encéfalo/metabolismo , Encéfalo/patología , Proteómica
3.
BMC Biol ; 22(1): 43, 2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38378561

RESUMEN

BACKGROUND: High tumor mutational burden (TMB) was reported to predict the efficacy of immune checkpoint inhibitors (ICIs). Pembrolizumab, an anti-PD-1, received FDA-approval for the treatment of unresectable/metastatic tumors with high TMB as determined by the FoundationOne®CDx test. It remains to be determined how TMB can also be calculated using other tests. RESULTS: FFPE/frozen tumor samples from various origins were sequenced in the frame of the Institut Curie (IC) Molecular Tumor Board using an in-house next-generation sequencing (NGS) panel. A TMB calculation method was developed at IC (IC algorithm) and compared to the FoundationOne® (FO) algorithm. Using IC algorithm, an optimal 10% variant allele frequency (VAF) cut-off was established for TMB evaluation on FFPE samples, compared to 5% on frozen samples. The median TMB score for MSS/POLE WT tumors was 8.8 mut/Mb versus 45 mut/Mb for MSI/POLE-mutated tumors. When focusing on MSS/POLE WT tumor samples, the highest median TMB scores were observed in lymphoma, lung, endometrial, and cervical cancers. After biological manual curation of these cases, 21% of them could be reclassified as MSI/POLE tumors and considered as "true TMB high." Higher TMB values were obtained using FO algorithm on FFPE samples compared to IC algorithm (40 mut/Mb [10-3927] versus 8.2 mut/Mb [2.5-897], p < 0.001). CONCLUSIONS: We herein propose a TMB calculation method and a bioinformatics tool that is customizable to different NGS panels and sample types. We were not able to retrieve TMB values from FO algorithm using our own algorithm and NGS panel.


Asunto(s)
Neoplasias , Humanos , Mutación , Neoplasias/genética , Secuenciación de Nucleótidos de Alto Rendimiento/métodos
4.
Br J Cancer ; 130(4): 613-619, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38182687

RESUMEN

BACKGROUND: To identify patients most likely to respond to everolimus, a mammalian target of rapamycin (mTOR) inhibitor, a prospective biomarker study was conducted in hormone receptor-positive endocrine-resistant metastatic breast cancer patients treated with exemestane-everolimus therapy. METHODS: Metastatic tumor biopsies were processed for immunohistochemical staining (p4EBP1, PTEN, pAKT, LKB1, and pS6K). ESR1, PIK3CA and AKT1 gene mutations were detected by NGS. The primary endpoint was the association between the p4EBP1 expression and clinical benefit rate (CBR) at 6 months of everolimus plus exemestane treatment. RESULTS: Of 150 patients included, 107 were evaluable for the primary endpoint. p4EBP1 staining above the median (Allred score ≥6) was associated with a higher CBR at 6 months (62% versus 40% in high-p4EBP1 versus low-p4EBP1, χ2 test, p = 0.026) and a longer progression-free survival (PFS) (median PFS of 9.2 versus 5.8 months in high-p4EBP1 versus low-p4EBP1; p = 0.02). When tested with other biomarkers, only p4EBP1 remained a significant predictive marker of PFS in multivariate analysis (hazard ratio, 0.591; p = 0.01). CONCLUSIONS: This study identified a subset of patients with hormone receptor-positive endocrine-resistant metastatic breast cancer and poor outcome who would derive less benefit from everolimus and exemestane. p4EBP1 may be a useful predictive biomarker in routine clinical practice. CLINICAL TRIAL REGISTRATION: NCT02444390.


Asunto(s)
Neoplasias de la Mama , Everolimus , Humanos , Femenino , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Androstadienos/uso terapéutico , Biomarcadores , Receptor ErbB-2/metabolismo
5.
Dev Cell ; 58(24): 3048-3063.e6, 2023 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-38056452

RESUMEN

Tissue homeostasis relies on rewiring of stem cell transcriptional programs into those of differentiated cells. Here, we investigate changes in chromatin occurring in a bipotent adult stem cells. Combining mapping of chromatin-associated factors with statistical modeling, we identify genome-wide transitions during differentiation in the adult Drosophila intestinal stem cell (ISC) lineage. Active, stem-cell-enriched genes transition to a repressive heterochromatin protein-1-enriched state more prominently in enteroendocrine cells (EEs) than in enterocytes (ECs), in which the histone H1-enriched Black state is preeminent. In contrast, terminal differentiation genes associated with metabolic functions follow a common path from a repressive, primed, histone H1-enriched Black state in ISCs to active chromatin states in EE and EC cells. Furthermore, we find that lineage priming has an important function in adult ISCs, and we identify histone H1 as a mediator of this process. These data define underlying principles of chromatin changes during adult multipotent stem cell differentiation.


Asunto(s)
Proteínas de Drosophila , Drosophila , Animales , Drosophila/metabolismo , Histonas/metabolismo , Cromatina/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Linaje de la Célula , Intestinos , Diferenciación Celular/genética
6.
Cell Rep ; 42(12): 113485, 2023 12 26.
Artículo en Inglés | MEDLINE | ID: mdl-38032794

RESUMEN

During development and aging, genome mutation leading to loss of heterozygosity (LOH) can uncover recessive phenotypes within tissue compartments. This phenomenon occurs in normal human tissues and is prevalent in pathological genetic conditions and cancers. While studies in yeast have defined DNA repair mechanisms that can promote LOH, the predominant pathways and environmental triggers in somatic tissues of multicellular organisms are not well understood. Here, we investigate mechanisms underlying LOH in intestinal stem cells in Drosophila. Infection with the pathogenic bacteria, Erwinia carotovora carotovora 15, but not Pseudomonas entomophila, increases LOH frequency. Using whole genome sequencing of somatic LOH events, we demonstrate that they arise primarily via mitotic recombination. Molecular features and genetic evidence argue against a break-induced replication mechanism and instead support cross-over via double Holliday junction-based repair. This study provides a mechanistic understanding of mitotic recombination, an important mediator of LOH, and its effects on stem cells in vivo.


Asunto(s)
Drosophila , Recombinación Genética , Animales , Humanos , Drosophila/genética , Recombinación Genética/genética , Reparación del ADN , Pérdida de Heterocigocidad , Saccharomyces cerevisiae/genética , Células Madre
7.
Curr Oncol ; 30(10): 9090-9103, 2023 10 11.
Artículo en Inglés | MEDLINE | ID: mdl-37887557

RESUMEN

Uveal melanoma is the most common primary intraocular malignancy in adults. Up to 50% of UM patients develop metastatic disease, usually in the liver. When metastatic, the prognosis is poor, and few treatment options exist. Here, we investigated the feasibility of establishing patient-derived xenografts (PDXs) from a patient's tumor in order to screen for therapies that the patient could benefit from. Samples obtained from 29 primary tumors and liver metastases of uveal melanoma were grafted into SCID mice. PDX models were successfully established for 35% of primary patient tumors and 67% of liver metastases. The tumor take rate was proportional to the risk of metastases. PDXs showed the same morphology, the same GNAQ/11, BAP1, and SF3B1 mutations, and the same chromosome 3 and 8q status as the corresponding patient samples. Six PDX models were challenged with two compounds for 4 weeks. We show that, for 31% of patients with high or intermediate risk of metastasis, the timing to obtain efficacy results on PDX models derived from their primary tumors was compatible with the selection of the therapy to treat the patient after relapse. PDXs could thus be a valid tool ("avatar") to select the best personalized therapy for one third of patients that are most at risk of relapse.


Asunto(s)
Neoplasias Hepáticas , Recurrencia Local de Neoplasia , Adulto , Animales , Ratones , Humanos , Estudios de Factibilidad , Xenoinjertos , Ratones SCID , Neoplasias Hepáticas/genética , Recurrencia
8.
Nat Commun ; 14(1): 6669, 2023 10 20.
Artículo en Inglés | MEDLINE | ID: mdl-37863903

RESUMEN

Atypical teratoid rhabdoid tumors (ATRT) are divided into MYC, TYR and SHH subgroups, suggesting diverse lineages of origin. Here, we investigate the imaging of human ATRT at diagnosis and the precise anatomic origin of brain tumors in the Rosa26-CreERT2::Smarcb1flox/flox model. This cross-species analysis points to an extra-cerebral origin for MYC tumors. Additionally, we clearly distinguish SHH ATRT emerging from the cerebellar anterior lobe (CAL) from those emerging from the basal ganglia (BG) and intra-ventricular (IV) regions. Molecular characteristics point to the midbrain-hindbrain boundary as the origin of CAL SHH ATRT, and to the ganglionic eminence as the origin of BG/IV SHH ATRT. Single-cell RNA sequencing on SHH ATRT supports these hypotheses. Trajectory analyses suggest that SMARCB1 loss induces a de-differentiation process mediated by repressors of the neuronal program such as REST, ID and the NOTCH pathway.


Asunto(s)
Neoplasias Encefálicas , Tumor Rabdoide , Teratoma , Humanos , Tumor Rabdoide/genética , Multiómica , Proteína SMARCB1/genética , Factores de Transcripción/genética , Neoplasias Encefálicas/genética , Diagnóstico por Imagen , Teratoma/patología , Proteínas Hedgehog/genética
9.
Cell Rep ; 42(9): 113132, 2023 09 26.
Artículo en Inglés | MEDLINE | ID: mdl-37708024

RESUMEN

Uveal melanoma (UM) is a rare cancer resulting from the transformation of melanocytes in the uveal tract. Integrative analysis has identified four molecular and clinical subsets of UM. To improve our molecular understanding of UM, we performed extensive multi-omics characterization comparing two aggressive UM patient-derived xenograft models with normal choroidal melanocytes, including DNA optical mapping, specific histone modifications, and DNA topology analysis using Hi-C. Our gene expression and cytogenetic analyses suggest that genomic instability is a hallmark of UM. We also identified a recurrent deletion in the BAP1 promoter resulting in loss of expression and associated with high risk of metastases in UM patients. Hi-C revealed chromatin topology changes associated with the upregulation of PRAME, an independent prognostic biomarker in UM, and a potential therapeutic target. Our findings illustrate how multi-omics approaches can improve our understanding of tumorigenesis and reveal two distinct mechanisms of gene expression dysregulation in UM.


Asunto(s)
Melanoma , Multiómica , Humanos , Melanoma/patología , Melanocitos/metabolismo , ADN , Antígenos de Neoplasias/genética
10.
J Med Genet ; 60(12): 1206-1209, 2023 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-37263769

RESUMEN

BRCA1 and BRCA2 are tumour suppressor genes that have been characterised as predisposition genes for the development of hereditary breast and ovarian cancers among other malignancies. The molecular diagnosis of this predisposition syndrome is based on the detection of inactivating variants of any type in those genes. But in the case of structural variants, functional consequences can be difficult to assess using standard molecular methods, as the precise resolution of their sequence is often impossible with short-read next generation sequencing techniques. It has been recently demonstrated that Oxford Nanopore long-read sequencing technology can accurately and rapidly provide genetic diagnoses of Mendelian diseases, including those linked to pathogenic structural variants. Here, we report the accurate resolution of a germline duplication event of exons 18-20 of BRCA1 using Nanopore sequencing with adaptive sampling target enrichment. This allowed us to classify this variant as pathogenic within a short timeframe of 10 days. This study provides a proof-of-concept that nanopore adaptive sampling is a highly efficient technique for the investigation of structural variants of tumour suppressor genes in a clinical context.


Asunto(s)
Neoplasias de la Mama , Secuenciación de Nanoporos , Femenino , Humanos , Virulencia , Predisposición Genética a la Enfermedad , Proteína BRCA1/genética , Proteína BRCA2/genética , Genes BRCA2 , Exones , Neoplasias de la Mama/genética , Mutación de Línea Germinal/genética , Secuenciación de Nucleótidos de Alto Rendimiento/métodos
11.
Nat Commun ; 14(1): 3698, 2023 06 22.
Artículo en Inglés | MEDLINE | ID: mdl-37349318

RESUMEN

Concurrent chemoradiotherapy (CRT) with blockade of the PD-1 pathway may enhance immune-mediated tumor control through increased phagocytosis, cell death, and antigen presentation. The NiCOL phase 1 trial (NCT03298893) is designed to determine the safety/tolerance profile and the recommended phase-II dose of nivolumab with and following concurrent CRT in 16 women with locally advanced cervical cancer. Secondary endpoints include objective response rate (ORR), progression free survival (PFS), disease free survival, and immune correlates of response. Three patients experience grade 3 dose-limiting toxicities. The pre-specified endpoints are met, and overall response rate is 93.8% [95%CI: 69.8-99.8%] with a 2-year PFS of 75% [95% CI: 56.5-99.5%]. Compared to patients with progressive disease (PD), progression-free (PF) subjects show a brisker stromal immune infiltrate, higher proximity of tumor-infiltrating CD3+ T cells to PD-L1+ tumor cells and of FOXP3+ T cells to proliferating CD11c+ myeloid cells. PF show higher baseline levels of PD-1 and ICOS-L on tumor-infiltrating EMRA CD4+ T cells and tumor-associated macrophages, respectively; PD instead, display enhanced PD-L1 expression on TAMs, higher peripheral frequencies of proliferating Tregs at baseline and higher PD-1 levels at week 6 post-treatment initiation on CD4 and CD8 T cell subsets. Concomitant nivolumab plus definitive CRT is safe and associated with encouraging PFS rates. Further validation in the subset of locally advanced cervical cancer displaying pre-existing, adaptive immune activation is warranted.


Asunto(s)
Neoplasias Pulmonares , Neoplasias del Cuello Uterino , Humanos , Femenino , Nivolumab/uso terapéutico , Neoplasias del Cuello Uterino/tratamiento farmacológico , Antígeno B7-H1 , Receptor de Muerte Celular Programada 1 , Quimioradioterapia , Neoplasias Pulmonares/tratamiento farmacológico
12.
Nature ; 617(7960): 386-394, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37100912

RESUMEN

Inflammation is a complex physiological process triggered in response to harmful stimuli1. It involves cells of the immune system capable of clearing sources of injury and damaged tissues. Excessive inflammation can occur as a result of infection and is a hallmark of several diseases2-4. The molecular bases underlying inflammatory responses are not fully understood. Here we show that the cell surface glycoprotein CD44, which marks the acquisition of distinct cell phenotypes in the context of development, immunity and cancer progression, mediates the uptake of metals including copper. We identify a pool of chemically reactive copper(II) in mitochondria of inflammatory macrophages that catalyses NAD(H) redox cycling by activating hydrogen peroxide. Maintenance of NAD+ enables metabolic and epigenetic programming towards the inflammatory state. Targeting mitochondrial copper(II) with supformin (LCC-12), a rationally designed dimer of metformin, induces a reduction of the NAD(H) pool, leading to metabolic and epigenetic states that oppose macrophage activation. LCC-12 interferes with cell plasticity in other settings and reduces inflammation in mouse models of bacterial and viral infections. Our work highlights the central role of copper as a regulator of cell plasticity and unveils a therapeutic strategy based on metabolic reprogramming and the control of epigenetic cell states.


Asunto(s)
Plasticidad de la Célula , Cobre , Inflamación , Transducción de Señal , Animales , Ratones , Cobre/metabolismo , Inflamación/tratamiento farmacológico , Inflamación/genética , Inflamación/inmunología , Inflamación/metabolismo , Inflamación/patología , Macrófagos/efectos de los fármacos , Macrófagos/inmunología , Macrófagos/metabolismo , Macrófagos/patología , NAD/metabolismo , Transducción de Señal/efectos de los fármacos , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Peróxido de Hidrógeno/metabolismo , Epigénesis Genética/efectos de los fármacos , Metformina/análogos & derivados , Oxidación-Reducción , Plasticidad de la Célula/efectos de los fármacos , Plasticidad de la Célula/genética , Activación de Macrófagos/efectos de los fármacos , Activación de Macrófagos/genética
14.
J Neurosurg ; 139(5): 1270-1280, 2023 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-37029667

RESUMEN

OBJECTIVE: Chordomas are rare bone neoplasms characterized by a high recurrence rate and no benefit from any approved medical treatment to date. However, the investigation of molecular alterations in chordomas could be essential to prognosticate, guide clinical decision-making, and identify theranostic biomarkers. The aim of this study was to provide a detailed genomic landscape of a homogeneous series of 64 chordoma samples, revealing driver events, theranostic markers, and outcome-related genomic features. METHODS: The authors conducted whole-exome sequencing (WES), targeted next-generation sequencing, and RNA sequencing of 64 skull base and spinal chordoma samples collected between December 2006 and September 2020. Clinical, histological, and radiological data were retrospectively analyzed and correlated to genetic findings. RESULTS: The authors identified homozygous deletions of CDKN2A/2B, PIK3CA mutations, and alterations affecting genes of SWI/SNF chromatin remodeling complexes (PBRM1 and ARID1A) as potential theranostic biomarkers. Using matched germline WES, they observed a higher frequency of a common genetic variant (rs2305089; p.(Gly177Asp)) in TBXT (97.8%, p < 0.001) compared to its distribution in the general population. PIK3CA mutation was identified as an independent biomarker of short progression-free survival (HR 10.68, p = 0.0008). Loss of CDKN2A/2B was more frequently observed in spinal tumors and recurrent tumors. CONCLUSIONS: In the current study, the authors identified driver events such as PBRM1 and PIK3CA mutations, TBXT alterations, or homozygous deletions of CDKN2A/2B, which could, for some, be considered potential theranostic markers and could allow for identifying novel therapeutic approaches. With the aim of a future biomolecular prognostication classification, alterations affecting PIK3CA and CDKN2A/2B could be considered as poor prognostic biomarkers.


Asunto(s)
Cordoma , Neoplasias de la Base del Cráneo , Neoplasias de la Columna Vertebral , Humanos , Pronóstico , Cordoma/patología , Neoplasias de la Columna Vertebral/genética , Medicina de Precisión , Estudios Retrospectivos , Recurrencia Local de Neoplasia/genética , Recurrencia Local de Neoplasia/patología , Biomarcadores , Neoplasias de la Base del Cráneo/patología , Base del Cráneo/patología , Fosfatidilinositol 3-Quinasa Clase I/genética
15.
Eur J Cancer ; 183: 152-161, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36868056

RESUMEN

BACKGROUND: Data on the role of the microbiota in cancer have accumulated in recent years, with particular interest in intratumoral bacteria. Previous results have shown that the composition of intratumoral microbiome is different depending on the type of primary tumour and that bacteria from the primary tumour could migrate to metastatic sites. METHODS: Seventy-nine patients with breast, lung, or colorectal cancer and available biopsy samples from lymph node, lung, or liver site, treated in the SHIVA01 trial were analysed. We performed bacterial 16S rRNA gene sequencing on these samples to characterise the intratumoral microbiome. We assessed the association between microbiome composition, clinicopathological characteristics, and outcomes. RESULTS: Microbial richness (Chao1 index), evenness (Shannon index) and beta-diversity (Bray Curtis distance) were associated with biopsy site (p = 0.0001, p = 0.03 and p < 0.0001, respectively) but not with primary tumour type (p = 0.52, p = 0.54 and p = 0.82, respectively). Furthermore, microbial richness was inversely associated with tumour-infiltrating lymphocytes (TILs, p = 0.02), and PD-L1 expression on immune cells (p = 0.03), or assessed by Tumor Proportion Score (TPS, p = 0.02) or Combined Positive Score (CPS, p = 0.04). Beta-diversity was also associated with these parameters (p < 0.05). Patients with lower intratumoral microbiome richness had shorter overall survival (p = 0.03) and progression-free survival (p = 0.02) in multivariate analysis. CONCLUSION: Biopsy site, rather than primary tumour type, was strongly associated with microbiome diversity. Immune histopathological parameters such as PD-L1 expression and TILs were significantly associated with alpha and beta-diversity supporting the cancer-microbiome-immune axis hypothesis.


Asunto(s)
Antígeno B7-H1 , Microbiota , Humanos , ARN Ribosómico 16S/genética , Pulmón , Mama , Bacterias
16.
EMBO J ; 42(7): e112358, 2023 04 03.
Artículo en Inglés | MEDLINE | ID: mdl-36762421

RESUMEN

The recognition of polyadenylation signals (PAS) in eukaryotic pre-mRNAs is usually coupled to transcription termination, occurring while pre-mRNA is chromatin-bound. However, for some pre-mRNAs, this 3'-end processing occurs post-transcriptionally, i.e., through a co-transcriptional cleavage (CoTC) event downstream of the PAS, leading to chromatin release and subsequent PAS cleavage in the nucleoplasm. While DNA-damaging agents trigger the shutdown of co-transcriptional chromatin-associated 3'-end processing, specific compensatory mechanisms exist to ensure efficient 3'-end processing for certain pre-mRNAs, including those that encode proteins involved in the DNA damage response, such as the tumor suppressor p53. We show that cleavage at the p53 polyadenylation site occurs in part post-transcriptionally following a co-transcriptional cleavage event. Cells with an engineered deletion of the p53 CoTC site exhibit impaired p53 3'-end processing, decreased mRNA and protein levels of p53 and its transcriptional target p21, and altered cell cycle progression upon UV-induced DNA damage. Using a transcriptome-wide analysis of PAS cleavage, we identify additional pre-mRNAs whose PAS cleavage is maintained in response to UV irradiation and occurring post-transcriptionally. These findings indicate that CoTC-type cleavage of pre-mRNAs, followed by PAS cleavage in the nucleoplasm, allows certain pre-mRNAs to escape 3'-end processing inhibition in response to UV-induced DNA damage.


Asunto(s)
Poliadenilación , Proteína p53 Supresora de Tumor , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo , Daño del ADN , Precursores del ARN/genética , Precursores del ARN/metabolismo , Cromatina
17.
Commun Biol ; 5(1): 1321, 2022 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-36456703

RESUMEN

Neuronal DNA modifications differ from those in other cells, including methylation outside CpG context and abundant 5-hydroxymethylation whose relevance for neuronal identities are unclear. Striatal projection neurons expressing D1 or D2 dopamine receptors allow addressing this question, as they share many characteristics but differ in their gene expression profiles, connections, and functional roles. We compare translating mRNAs and DNA modifications in these two populations. DNA methylation differences occur predominantly in large genomic clusters including differentially expressed genes, potentially important for D1 and D2 neurons. Decreased gene body methylation is associated with higher gene expression. Hydroxymethylation differences are more scattered and affect transcription factor binding sites, which can influence gene expression. We also find a strong genome-wide hydroxymethylation asymmetry between the two DNA strands, particularly pronounced at expressed genes and retrotransposons. These results identify novel properties of neuronal DNA modifications and unveil epigenetic characteristics of striatal projection neurons heterogeneity.


Asunto(s)
Metilación de ADN , Interneuronas , Cuerpo Estriado , Neuronas , Epigenómica
18.
Front Oncol ; 12: 958155, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36387192

RESUMEN

Human TRIAP1 (TP53-regulated inhibitor of apoptosis 1; also known as p53CSV for p53-inducible cell survival factor) is the homolog of yeast Mdm35, a well-known chaperone that interacts with the Ups/PRELI family proteins and participates in the intramitochondrial transfer of lipids for the synthesis of cardiolipin (CL) and phosphatidylethanolamine. Although recent reports indicate that TRIAP1 is a prosurvival factor abnormally overexpressed in various types of cancer, knowledge about its molecular and metabolic function in human cells is still elusive. It is therefore critical to understand the metabolic and proliferative advantages that TRIAP1 expression provides to cancer cells. Here, in a colorectal cancer cell model, we report that the expression of TRIAP1 supports cancer cell proliferation and tumorigenesis. Depletion of TRIAP1 perturbed the mitochondrial ultrastructure, without a major impact on CL levels and mitochondrial activity. TRIAP1 depletion caused extramitochondrial perturbations resulting in changes in the endoplasmic reticulum-dependent lipid homeostasis and induction of a p53-mediated stress response. Furthermore, we observed that TRIAP1 depletion conferred a robust p53-mediated resistance to the metabolic stress caused by glutamine deprivation. These findings highlight the importance of TRIAP1 in tumorigenesis and indicate that the loss of TRIAP1 has extramitochondrial consequences that could impact on the metabolic plasticity of cancer cells and their response to conditions of nutrient deprivation.

19.
J Vis Exp ; (188)2022 10 14.
Artículo en Inglés | MEDLINE | ID: mdl-36314814

RESUMEN

The spatial organization of the genome contributes to its function and regulation in many contexts, including transcription, replication, recombination, and repair. Understanding the exact causality between genome topology and function is therefore crucial and increasingly the subject of intensive research. Chromosome conformation capture technologies (3C) allow inferring the 3D structure of chromatin by measuring the frequency of interactions between any region of the genome. Here we describe a fast and simple protocol to perform Capture Hi-C, a 3C-based target enrichment method that characterizes the allele-specific 3D organization of megabased-sized genomic targets at high-resolution. In Capture Hi-C, target regions are captured by an array of biotinylated probes before downstream high-throughput sequencing. Thus, higher resolution and allele-specificity are achieved while improving the time-effectiveness and affordability of the technology. To demonstrate its strengths, the Capture Hi-C protocol was applied to the mouse X-inactivation center (Xic), the master regulatory locus of X-chromosome inactivation (XCI).


Asunto(s)
Cromatina , Cromosomas , Ratones , Animales , Mapeo Cromosómico/métodos , Cromatina/genética , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Genómica/métodos
20.
Nature ; 610(7931): 343-348, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36071165

RESUMEN

Cancer progression is driven in part by genomic alterations1. The genomic characterization of cancers has shown interpatient heterogeneity regarding driver alterations2, leading to the concept that generation of genomic profiling in patients with cancer could allow the selection of effective therapies3,4. Although DNA sequencing has been implemented in practice, it remains unclear how to use its results. A total of 1,462 patients with HER2-non-overexpressing metastatic breast cancer were enroled to receive genomic profiling in the SAFIR02-BREAST trial. Two hundred and thirty-eight of these patients were randomized in two trials (nos. NCT02299999 and NCT03386162) comparing the efficacy of maintenance treatment5 with a targeted therapy matched to genomic alteration. Targeted therapies matched to genomics improves progression-free survival when genomic alterations are classified as level I/II according to the ESMO Scale for Clinical Actionability of Molecular Targets (ESCAT)6 (adjusted hazards ratio (HR): 0.41, 90% confidence interval (CI): 0.27-0.61, P < 0.001), but not when alterations are unselected using ESCAT (adjusted HR: 0.77, 95% CI: 0.56-1.06, P = 0.109). No improvement in progression-free survival was observed in the targeted therapies arm (unadjusted HR: 1.15, 95% CI: 0.76-1.75) for patients presenting with ESCAT alteration beyond level I/II. Patients with germline BRCA1/2 mutations (n = 49) derived high benefit from olaparib (gBRCA1: HR = 0.36, 90% CI: 0.14-0.89; gBRCA2: HR = 0.37, 90% CI: 0.17-0.78). This trial provides evidence that the treatment decision led by genomics should be driven by a framework of target actionability in patients with metastatic breast cancer.


Asunto(s)
Neoplasias de la Mama , Toma de Decisiones Clínicas , Genoma Humano , Genómica , Metástasis de la Neoplasia , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Toma de Decisiones Clínicas/métodos , Análisis Mutacional de ADN , Progresión de la Enfermedad , Femenino , Genes BRCA1 , Genes BRCA2 , Genoma Humano/genética , Humanos , Metástasis de la Neoplasia/tratamiento farmacológico , Metástasis de la Neoplasia/genética , Metástasis de la Neoplasia/patología , Ftalazinas/uso terapéutico , Piperazinas/uso terapéutico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...