Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 120(29): e2301302120, 2023 07 18.
Artículo en Inglés | MEDLINE | ID: mdl-37428935

RESUMEN

Carbapenemase and extended ß-lactamase-producing Klebsiella pneumoniae isolates represent a major health threat, stimulating increasing interest in immunotherapeutic approaches for combating Klebsiella infections. Lipopolysaccharide O antigen polysaccharides offer viable targets for immunotherapeutic development, and several studies have described protection with O-specific antibodies in animal models of infection. O1 antigen is produced by almost half of clinical Klebsiella isolates. The O1 polysaccharide backbone structure is known, but monoclonal antibodies raised against the O1 antigen showed varying reactivity against different isolates that could not be explained by the known structure. Reinvestigation of the structure by NMR spectroscopy revealed the presence of the reported polysaccharide backbone (glycoform O1a), as well as a previously unknown O1b glycoform composed of the O1a backbone modified with a terminal pyruvate group. The activity of the responsible pyruvyltransferase (WbbZ) was confirmed by western immunoblotting and in vitro chemoenzymatic synthesis of the O1b terminus. Bioinformatic data indicate that almost all O1 isolates possess genes required to produce both glycoforms. We describe the presence of O1ab-biosynthesis genes in other bacterial species and report a functional O1 locus on a bacteriophage genome. Homologs of wbbZ are widespread in genetic loci for the assembly of unrelated glycostructures in bacteria and yeast. In K. pneumoniae, simultaneous production of both O1 glycoforms is enabled by the lack of specificity of the ABC transporter that exports the nascent glycan, and the data reported here provide mechanistic understanding of the capacity for evolution of antigenic diversity within an important class of biomolecules produced by many bacteria.


Asunto(s)
Infecciones por Klebsiella , Klebsiella pneumoniae , Animales , Klebsiella pneumoniae/genética , Lipopolisacáridos , Antígenos O , Klebsiella , Western Blotting , Infecciones por Klebsiella/prevención & control
2.
Carbohydr Res ; 450: 19-29, 2017 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-28837839

RESUMEN

Streptococcus pneumoniae is a globally important encapsulated human pathogen with approximately 100 different serotypes recognized. Serogroup 23 consists of serotype 23F, present in licensed vaccines, and emerging serotypes 23A and 23B. Here, we report the previously unknown structures of the pneumococcal capsular polysaccharides serotype 23A and 23B determined using genetic analysis, NMR spectroscopy, composition and linkage analysis and Smith degradation (of polysaccharide 23A). The structure of the serotype 23A capsular polysaccharide is: →4)-ß-D-Glcp-(1→3)-[[α-L-Rhap-(1→2)]-[Gro-(2→P→3)]-ß-D-Galp-(1→4)]-ß-L-Rhap-(1→. This structure differs from polysaccharide 23F as it features a disaccharide backbone and the di-substituted ß-Gal is linked to ß-Rha as a side chain. This is due to the different polymerization position catalysed by the unusually divergent repeat unit polymerase Wzy in the 23A cps biosynthesis locus. Steric crowding in 23A, confirmed by molecular models, causes the NMR signal for H-1 of the di-substituted 2,3-ß-Gal to resonate in the α-anomeric region. The structure of the serotype 23B capsular polysaccharide is the same as 23F, but without the terminal α-Rha: →4)-ß-D-Glcp-(1→4)-[Gro-(2→P→3)]-ß-D-Galp-(1→4)-ß-L-Rhap-(1→. The immunodominant terminal α-Rha of 23F is more sterically crowded in 23A and absent in 23B. This may explain the reported typing cross reactions for serotype 23F: slight with 23A and none with 23B.


Asunto(s)
Cápsulas Bacterianas/química , Polisacáridos Bacterianos/química , Streptococcus pneumoniae/química , Streptococcus pneumoniae/genética , Secuencia de Carbohidratos , Secuencias Repetitivas de Ácidos Nucleicos , Especificidad de la Especie
3.
J Biol Chem ; 287(46): 38812-23, 2012 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-23012364

RESUMEN

Microarray analysis of Bradyrhizobium japonicum grown under copper limitation uncovered five genes named pcuABCDE, which are co-transcribed and co-regulated as an operon. The predicted gene products are periplasmic proteins (PcuA, PcuC, and PcuD), a TonB-dependent outer membrane receptor (PcuB), and a cytoplasmic membrane-integral protein (PcuE). Homologs of PcuC and PcuE had been discovered in other bacteria, namely PCu(A)C and YcnJ, where they play a role in cytochrome oxidase biogenesis and copper transport, respectively. Deletion of the pcuABCDE operon led to a pleiotropic phenotype, including defects in the aa(3)-type cytochrome oxidase, symbiotic nitrogen fixation, and anoxic nitrate respiration. Complementation analyses revealed that, under our assay conditions, the tested functions depended only on the pcuC gene and not on pcuA, pcuB, pcuD, or pcuE. The B. japonicum genome harbors a second pcuC-like gene (blr7088), which, however, did not functionally replace the mutated pcuC. The PcuC protein was overexpressed in Escherichia coli, purified to homogeneity, and shown to bind Cu(I) with high affinity in a 1:1 stoichiometry. The replacement of His(79), Met(90), His(113), and Met(115) by alanine perturbed copper binding. This corroborates the previously purported role of this protein as a periplasmic copper chaperone for the formation of the Cu(A) center on the aa(3)-type cytochrome oxidase. In addition, we provide evidence that PcuC and the copper chaperone ScoI are important for the symbiotically essential, Cu(A)-free cbb(3)-type cytochrome oxidase specifically in endosymbiotic bacteroids of soybean root nodules, which could explain the symbiosis-defective phenotype of the pcuC and scoI mutants.


Asunto(s)
Bradyrhizobium/enzimología , Proteínas Portadoras/metabolismo , Cobre/química , Complejo IV de Transporte de Electrones/biosíntesis , Secuencia de Aminoácidos , Proteínas Bacterianas/metabolismo , Proteínas Portadoras/genética , Cobre/metabolismo , Complejo IV de Transporte de Electrones/química , Perfilación de la Expresión Génica , Regulación Bacteriana de la Expresión Génica , Prueba de Complementación Genética , Proteínas Mitocondriales/metabolismo , Chaperonas Moleculares/metabolismo , Datos de Secuencia Molecular , Mutación , Nitrógeno/química , Fijación del Nitrógeno , Análisis de Secuencia por Matrices de Oligonucleótidos , Periplasma/metabolismo , Fenotipo , Homología de Secuencia de Aminoácido
4.
ACS Chem Biol ; 5(2): 203-14, 2010 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-20038185

RESUMEN

While some organisms, including humans, eliminate oxidized purines to get rid of excess nitrogen, for many others the recovery of the purine ring nitrogen is vital. In the so-called ureide pathway, nitrogen is released as ammonia from allantoate through a series of reactions starting with allantoate amidohydrolase (AAH), a manganese-dependent enzyme found in plants and bacteria. We report NMR evidence that the true product of the AAH reaction is S-ureidoglycine, a nonstandard alpha-amino acid that spontaneously releases ammonia in vitro. Using gene proximity and logical genome analysis, we identified a candidate gene (ylbA) for S-ureidoglycine metabolism. The proteins encoded by Escherichia coli and Arabidopsis thaliana genes catalyze the manganese-dependent release of ammonia through hydrolysis of S-ureidoglycine. Hydrolysis then inverts the configuration and yields S-ureidoglycolate. S-Ureidoglycine aminohydrolase (UGHY) is cytosolic in bacteria, whereas in plants it is localized, like allantoate amidohydrolase, in the endoplasmic reticulum. These findings strengthen the basis for the known sensitivity of the ureide pathway to Mn availability and suggest a further rationale for the active transport of Mn in the endoplasmic reticulum of plant cells.


Asunto(s)
Aminohidrolasas/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimología , Proteínas de Escherichia coli/metabolismo , Escherichia coli/enzimología , Glicina/análogos & derivados , Manganeso/metabolismo , Nitrógeno/metabolismo , Urea/análogos & derivados , Ureohidrolasas/metabolismo , Secuencia de Aminoácidos , Aminohidrolasas/química , Aminohidrolasas/genética , Arabidopsis/genética , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Retículo Endoplásmico/enzimología , Escherichia coli/genética , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Glicina/metabolismo , Hidrólisis , Datos de Secuencia Molecular , Estructura Secundaria de Proteína , Urea/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...