Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 148
Filtrar
1.
Res Sq ; 2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38464287

RESUMEN

NP cells of the intervertebral disc and articular chondrocytes reside in avascular and hypoxic tissue niches. As a consequence of these environmental constraints the cells are primarily glycolytic in nature and were long thought to have a minimal reliance on mitochondrial function. Recent studies have challenged this long-held view and highlighted the increasingly important role of mitochondria in the physiology of these tissues. However, the foundational understanding of mechanisms governing mitochondrial dynamics and function in these tissues is lacking. We investigated the role of mitochondrial fusion protein OPA1 in maintaining the spine and knee joint health in mice. OPA1 knockdown in NP cells altered mitochondrial size and cristae shape and increased the oxygen consumption rate without affecting ATP synthesis. OPA1 governed the morphology of multiple organelles, including peroxisomes, early endosomes and cis-Golgi and its loss resulted in the dysregulation of NP cell autophagy. Metabolic profiling and 13C-flux analyses revealed TCA cycle anaplerosis and altered metabolism in OPA1-deficient NP cells. Noteworthy, Opa1AcanCreERT2 mice with Opa1 deletion in disc and cartilage showed age-dependent disc degeneration, osteoarthritis, and vertebral osteopenia. Our findings underscore that OPA1 regulation of mitochondrial dynamics and multi-organelle interactions is critical in preserving metabolic homeostasis of disc and cartilage.

2.
STAR Protoc ; 5(1): 102842, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38244201

RESUMEN

Mitochondrial dynamic process is important for cell viability, metabolic activity, and mitochondria health. Here, we present a protocol for measuring mitochondrial size through immunofluorescence staining, confocal imaging, and analysis in ImageJ. We describe the steps for tissue processing, antigen retrieval, mitochondrial staining using an integrating immunofluorescence assay, and computerized image analysis to measure each mitochondrial size in mouse and human liver tissues. This protocol reduces tissue sample volume and processing time for the preparation of primary cells. For complete details on the use and execution of this protocol, please refer to Pearah et al.1.


Asunto(s)
Procesamiento de Imagen Asistido por Computador , Hígado , Humanos , Animales , Ratones , Tamaño Mitocondrial , Supervivencia Celular , Mitocondrias
3.
bioRxiv ; 2024 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-38293153

RESUMEN

Due to their glycolytic nature and limited vascularity, nucleus pulposus (NP) cells of the intervertebral disc and articular chondrocytes were long thought to have minimal reliance on mitochondrial function. Recent studies have challenged this long-held view and highlighted the increasingly important role of mitochondria in the physiology of these tissues. We investigated the role of mitochondrial fusion protein OPA1 in maintaining the spine and knee joint health in aging mice. OPA1 knockdown in NP cells altered mitochondrial size and cristae shape and increased the oxygen consumption rate without affecting ATP synthesis. OPA1 governed the morphology of multiple organelles, and its loss resulted in the dysregulation of NP cell autophagy. Metabolic profiling and 13 C-flux analyses revealed TCA cycle anaplerosis and altered metabolism in OPA1-deficient NP cells. Noteworthy, Opa1 AcanCreERT2 mice showed age- dependent disc, and cartilage degeneration and vertebral osteopenia. Our findings suggest that OPA1 regulation of mitochondrial dynamics and multi-organelle interactions is critical in preserving metabolic homeostasis of disc and cartilage. Teaser: OPA1 is necessary for the maintenance of intervertebral disc and knee joint health in aging mice.

4.
Cell Death Dis ; 14(10): 664, 2023 10 10.
Artículo en Inglés | MEDLINE | ID: mdl-37816729

RESUMEN

Metabolic reprogramming has been recognized as one of the major mechanisms that fuel tumor initiation and progression. Our previous studies demonstrate that activation of Drp1 promotes fatty acid oxidation and downstream Wnt signaling. Here we investigate the role of Drp1 in regulating glycogen metabolism in colon cancer. Knockdown of Drp1 decreases mitochondrial respiration without increasing glycolysis. Analysis of cellular metabolites reveals that the levels of glucose-6-phosphate, a precursor for glycogenesis, are significantly elevated whereas pyruvate and other TCA cycle metabolites remain unchanged in Drp1 knockdown cells. Additionally, silencing Drp1 activates AMPK to stimulate the expression glycogen synthase 1 (GYS1) mRNA and promote glycogen storage. Using 3D organoids from Apcf/f/Villin-CreERT2 models, we show that glycogen levels are elevated in tumor organoids upon genetic deletion of Drp1. Similarly, increased GYS1 expression and glycogen accumulation are detected in xenograft tumors derived from Drp1 knockdown colon cancer cells. Functionally, increased glycogen storage provides survival advantage to Drp1 knockdown cells. Co-targeting glycogen phosphorylase-mediated glycogenolysis sensitizes Drp1 knockdown cells to chemotherapy drug treatment. Taken together, our results suggest that Drp1-loss activates glucose uptake and glycogenesis as compensative metabolic pathways to promote cell survival. Combined inhibition of glycogen metabolism may enhance the efficacy of chemotherapeutic agents for colon cancer treatment.


Asunto(s)
Neoplasias del Colon , Glucogenólisis , Humanos , Supervivencia Celular , Dinámicas Mitocondriales , Transformación Celular Neoplásica , Glucógeno/metabolismo , Neoplasias del Colon/genética , Dinaminas/metabolismo
5.
Cell Chem Biol ; 30(12): 1585-1600.e6, 2023 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-37890479

RESUMEN

Impaired mitochondrial dynamics causes aging-related or metabolic diseases. Yet, the molecular mechanism responsible for the impairment of mitochondrial dynamics is still not well understood. Here, we report that elevated blood insulin and/or glucagon levels downregulate mitochondrial fission through directly phosphorylating AMPKα at S496 by AKT or PKA, resulting in the impairment of AMPK-MFF-DRP1 signaling and mitochondrial dynamics and activity. Since there are significantly increased AMPKα1 phosphorylation at S496 in the liver of elderly mice, obese mice, and obese patients, we, therefore, designed AMPK-specific targeting peptides (Pa496m and Pa496h) to block AMPKα1S496 phosphorylation and found that these targeting peptides can increase AMPK kinase activity, augment mitochondrial fission and oxidation, and reduce ROS, leading to the rejuvenation of mitochondria. Furthermore, these AMPK targeting peptides robustly suppress liver glucose production in obese mice. Our data suggest these targeting peptides are promising therapeutic agents for improving mitochondrial dynamics and activity and alleviating hyperglycemia in elderly and obese patients.


Asunto(s)
Proteínas Quinasas Activadas por AMP , Hiperglucemia , Humanos , Ratones , Animales , Anciano , Proteínas Quinasas Activadas por AMP/metabolismo , Fosforilación , Dinaminas/metabolismo , Dinámicas Mitocondriales , Hiperglucemia/tratamiento farmacológico , Envejecimiento , Péptidos/metabolismo , Obesidad/tratamiento farmacológico
6.
Nat Commun ; 14(1): 6721, 2023 10 23.
Artículo en Inglés | MEDLINE | ID: mdl-37872238

RESUMEN

Mitochondria are critical for metabolic homeostasis of the liver, and their dysfunction is a major cause of liver diseases. Optic atrophy 1 (OPA1) is a mitochondrial fusion protein with a role in cristae shaping. Disruption of OPA1 causes mitochondrial dysfunction. However, the role of OPA1 in liver function is poorly understood. In this study, we delete OPA1 in the fully developed liver of male mice. Unexpectedly, OPA1 liver knockout (LKO) mice are healthy with unaffected mitochondrial respiration, despite disrupted cristae morphology. OPA1 LKO induces a stress response that establishes a new homeostatic state for sustained liver function. Our data show that OPA1 is required for proper complex V assembly and that OPA1 LKO protects the liver from drug toxicity. Mechanistically, OPA1 LKO decreases toxic drug metabolism and confers resistance to the mitochondrial permeability transition. This study demonstrates that OPA1 is dispensable in the liver, and that the mitohormesis induced by OPA1 LKO prevents liver injury and contributes to liver resiliency.


Asunto(s)
Dinámicas Mitocondriales , Proteínas Mitocondriales , Masculino , Animales , Ratones , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , GTP Fosfohidrolasas/genética , GTP Fosfohidrolasas/metabolismo , Mitocondrias/metabolismo , Hígado/metabolismo
7.
Cell Rep ; 42(10): 113291, 2023 10 31.
Artículo en Inglés | MEDLINE | ID: mdl-37862166

RESUMEN

Dysfunctional mitochondria are removed via multiple pathways, such as mitophagy, a selective autophagy process. Here, we identify an intracellular hybrid mitochondria-lysosome organelle (termed the mitochondria-lysosome-related organelle [MLRO]), which regulates mitochondrial homeostasis independent of canonical mitophagy during hepatocyte dedifferentiation. The MLRO is an electron-dense organelle that has either a single or double membrane with both mitochondria and lysosome markers. Mechanistically, the MLRO is likely formed from the fusion of mitochondria-derived vesicles (MDVs) with lysosomes through a PARKIN-, ATG5-, and DRP1-independent process, which is negatively regulated by transcription factor EB (TFEB) and associated with mitochondrial protein degradation and hepatocyte dedifferentiation. The MLRO, which is galectin-3 positive, is reminiscent of damaged lysosome and could be cleared by overexpression of TFEB, resulting in attenuation of hepatocyte dedifferentiation. Together, results from this study suggest that the MLRO may act as an alternative mechanism for mitochondrial quality control independent of canonical autophagy/mitophagy involved in cell dedifferentiation.


Asunto(s)
Mitocondrias , Orgánulos , Mitocondrias/metabolismo , Orgánulos/metabolismo , Lisosomas/metabolismo , Autofagia/fisiología , Mitofagia/fisiología
8.
Mol Metab ; 77: 101802, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37690520

RESUMEN

OBJECTIVE: Dynamin-related protein 1 (Drp1) is the key regulator of mitochondrial fission. We and others have reported a strong correlation between enhanced Drp1 activity and impaired skeletal muscle insulin sensitivity. This study aimed to determine whether Drp1 directly regulates skeletal muscle insulin sensitivity and whole-body glucose homeostasis. METHODS: We employed tamoxifen-inducible skeletal muscle-specific heterozygous Drp1 knockout mice (mDrp1+/-). Male mDrp1+/- and wildtype (WT) mice were fed with either a high-fat diet (HFD) or low-fat diet (LFD) for four weeks, followed by tamoxifen injections for five consecutive days, and remained on their respective diet for another four weeks. In addition, we used primary human skeletal muscle cells (HSkMC) from lean, insulin-sensitive, and severely obese, insulin-resistant humans and transfected the cells with either a Drp1 shRNA (shDrp1) or scramble shRNA construct. Skeletal muscle and whole-body insulin sensitivity, skeletal muscle insulin signaling, mitochondrial network morphology, respiration, and H2O2 production were measured. RESULTS: Partial deletion of the Drp1 gene in skeletal muscle led to improved whole-body glucose tolerance and insulin sensitivity (P < 0.05) in diet-induced obese, insulin-resistant mice but not in lean mice. Analyses of mitochondrial structure and function revealed that the partial deletion of the Drp1 gene restored mitochondrial dynamics, improved mitochondrial morphology, and reduced mitochondrial Complex I- and II-derived H2O2 (P < 0.05) under the condition of diet-induced obesity. In addition, partial deletion of Drp1 in skeletal muscle resulted in elevated circulating FGF21 (P < 0.05) and in a trend towards increase of FGF21 expression in skeletal muscle tissue (P = 0.095). In primary myotubes derived from severely obese, insulin-resistant humans, ShRNA-induced-knockdown of Drp1 resulted in enhanced insulin signaling, insulin-stimulated glucose uptake and reduced cellular reactive oxygen species (ROS) content compared to the shScramble-treated myotubes from the same donors (P < 0.05). CONCLUSION: These data demonstrate that partial loss of skeletal muscle-specific Drp1 expression is sufficient to improve whole-body glucose homeostasis and insulin sensitivity under obese, insulin-resistant conditions, which may be, at least in part, due to reduced mitochondrial H2O2 production. In addition, our findings revealed divergent effects of Drp1 on whole-body metabolism under lean healthy or obese insulin-resistant conditions in mice.


Asunto(s)
Resistencia a la Insulina , Animales , Humanos , Masculino , Ratones , Dieta Alta en Grasa/efectos adversos , Dinaminas/genética , Dinaminas/metabolismo , Glucosa/metabolismo , Peróxido de Hidrógeno/metabolismo , Insulina/metabolismo , Resistencia a la Insulina/fisiología , Ratones Obesos , Músculo Esquelético/metabolismo , Obesidad/metabolismo , ARN Interferente Pequeño/metabolismo , Tamoxifeno/farmacología
9.
J Cell Biol ; 222(10)2023 10 02.
Artículo en Inglés | MEDLINE | ID: mdl-37707790

RESUMEN

Mitochondrial fusion plays an important role in both their structure and function. In this issue, Su et al. (2023. J. Cell Biol.https://doi.org/10.1083/jcb.202301091) report that a nucleoside diphosphate kinase, NME3, facilitates mitochondrial tethering prior to fusion through its direct membrane-binding and hexamerization but not its kinase activity.


Asunto(s)
Difosfatos , Mitocondrias , Nucleósido Difosfato Quinasas NM23 , Mitocondrias/genética , Dinámicas Mitocondriales , Nucleótidos , Fosforilación , Humanos , Nucleósido Difosfato Quinasas NM23/genética
10.
iScience ; 26(2): 106067, 2023 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-36818283

RESUMEN

The human mtHSP60/HSPD1-mtHSP10/HSPE1 system prevents protein misfolding and maintains proteostasis in the mitochondrial matrix. Altered activities of this chaperonin system have been implicated in human diseases, such as cancer and neurodegeneration. However, how defects in HSPD1 and HSPE1 affect mitochondrial structure and dynamics remains elusive. In the current study, we address this fundamental question in a human cell line, HEK293T. We found that the depletion of HSPD1 or HSPE1 results in fragmentation of mitochondria, suggesting a decrease in mitochondrial fusion. Supporting this notion, HSPE1 depletion led to proteolytic inactivation of OPA1, a dynamin-related GTPase that fuses the mitochondrial membrane. This OPA1 inactivation was mediated by a stress-activated metalloprotease, OMA1. In contrast, HSPD1 depletion did not induce OMA1 activation or OPA1 cleavage. These data suggest that HSPE1 controls mitochondrial morphology through a mechanism separate from its chaperonin activity.

11.
Cell Metab ; 35(2): 345-360.e7, 2023 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-36754021

RESUMEN

Mitochondrial components have been abundantly detected in bone matrix, implying that they are somehow transported extracellularly to regulate osteogenesis. Here, we demonstrate that mitochondria and mitochondrial-derived vesicles (MDVs) are secreted from mature osteoblasts to promote differentiation of osteoprogenitors. We show that osteogenic induction stimulates mitochondrial fragmentation, donut formation, and secretion of mitochondria through CD38/cADPR signaling. Enhancing mitochondrial fission and donut formation through Opa1 knockdown or Fis1 overexpression increases mitochondrial secretion and accelerates osteogenesis. We also show that mitochondrial fusion promoter M1, which induces Opa1 expression, impedes osteogenesis, whereas osteoblast-specific Opa1 deletion increases bone mass. We further demonstrate that secreted mitochondria and MDVs enhance bone regeneration in vivo. Our findings suggest that mitochondrial morphology in mature osteoblasts is adapted for extracellular secretion, and secreted mitochondria and MDVs are critical promoters of osteogenesis.


Asunto(s)
Mitocondrias , Osteogénesis , Osteogénesis/fisiología , Mitocondrias/metabolismo , Osteoblastos/metabolismo , Dinámicas Mitocondriales , Diferenciación Celular
12.
J Neuromuscul Dis ; 10(1): 107-118, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36314214

RESUMEN

BACKGROUND: The number of mutations in nuclear encoded genes causing mitochondrial disease is ever increasing. Identification of these mutations is particularly important in the diagnosis of neuromuscular disorders as their presentation may mimic other acquired disorders.We present a novel heterozygous variant in mitochondrial fission factor (MFF) which mimics myasthenia gravis. OBJECTIVE: To determine if the MFF c.937G>A, p.E313K variant causes a mild mitochondrial phenotype. METHODS: We used whole exome sequencing (WES) to identify a novel heterozygous variant in MFF in a patient with ptosis, fatigue and muscle weakness. Using patient derived fibroblasts, we performed assays to evaluate mitochondrial and peroxisome dynamics. RESULTS: We show that fibroblasts derived from this patient are defective in mitochondrial fission, despite normal recruitment of Drp1 to the mitochondria. CONCLUSIONS: The MFF c.937G>A, p.E313K variant leads to a mild mitochondrial phenotype and is associated with defective mitochondrial fission in patient-derived fibroblasts.


Asunto(s)
Dinaminas , Mitocondrias , Dinaminas/genética , Mitocondrias/genética , Factores de Transcripción/genética , Mutación
13.
J Biol Chem ; 299(2): 102822, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36563856

RESUMEN

RING-between RING (RBR)-type ubiquitin (Ub) ligases (E3s) such as Parkin receive Ub from Ub-conjugating enzymes (E2s) in response to ligase activation. However, the specific E2s that transfer Ub to each RBR-type ligase are largely unknown because of insufficient methods for monitoring their interaction. To address this problem, we have developed a method that detects intracellular interactions between E2s and activated Parkin. Fluorescent homotetramer Azami-Green fused with E2 and oligomeric Ash (Assembly helper) fused with Parkin form a liquid-liquid phase separation (LLPS) in cells only when E2 and Parkin interact. Using this method, we identified multiple E2s interacting with activated Parkin on damaged mitochondria during mitophagy. Combined with in vitro ubiquitination assays and bioinformatics, these findings revealed an underlying consensus sequence for E2 interactions with activated Parkin. Application of this method to other RBR-type E3s including HOIP, HHARI, and TRIAD1 revealed that HOIP forms an LLPS with its substrate NEMO in response to a proinflammatory cytokine and that HHARI and TRIAD1 form a cytosolic LLPS independent of Ub-like protein NEDD8. Since an E2-E3 interaction is a prerequisite for RBR-type E3 activation and subsequent substrate ubiquitination, the method we have established here can be an in-cell tool to elucidate the potentially novel mechanisms involved in RBR-type E3s.


Asunto(s)
Enzimas Ubiquitina-Conjugadoras , Ubiquitina-Proteína Ligasas , Ubiquitina/metabolismo , Enzimas Ubiquitina-Conjugadoras/química , Enzimas Ubiquitina-Conjugadoras/aislamiento & purificación , Enzimas Ubiquitina-Conjugadoras/metabolismo , Ubiquitina-Proteína Ligasas/química , Ubiquitina-Proteína Ligasas/aislamiento & purificación , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitinación , Unión Proteica , Mitofagia , Mitocondrias/metabolismo , Mitocondrias/patología , Quinasa I-kappa B/metabolismo
14.
Hepatology ; 77(1): 159-175, 2023 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-35698731

RESUMEN

BACKGROUND AND AIMS: Increased megamitochondria formation and impaired mitophagy in hepatocytes have been linked to the pathogenesis of alcohol-associated liver disease (ALD). This study aims to determine the mechanisms by which alcohol consumption increases megamitochondria formation in the pathogenesis of ALD. APPROACH AND RESULTS: Human alcoholic hepatitis (AH) liver samples were used for electron microscopy, histology, and biochemical analysis. Liver-specific dynamin-related protein 1 (DRP1; gene name DNM1L, an essential gene regulating mitochondria fission ) knockout (L-DRP1 KO) mice and wild-type mice were subjected to chronic plus binge alcohol feeding. Both human AH and alcohol-fed mice had decreased hepatic DRP1 with increased accumulation of hepatic megamitochondria. Mechanistic studies revealed that alcohol feeding decreased DRP1 by impairing transcription factor EB-mediated induction of DNM1L . L-DRP1 KO mice had increased megamitochondria and decreased mitophagy with increased liver injury and inflammation, which were further exacerbated by alcohol feeding. Seahorse flux and unbiased metabolomics analysis showed alcohol intake increased mitochondria oxygen consumption and hepatic nicotinamide adenine dinucleotide (NAD + ), acylcarnitine, and ketone levels, which were attenuated in L-DRP1 KO mice, suggesting that loss of hepatic DRP1 leads to maladaptation to alcohol-induced metabolic stress. RNA-sequencing and real-time quantitative PCR analysis revealed increased gene expression of the cGAS-stimulator of interferon genes (STING)-interferon pathway in L-DRP1 KO mice regardless of alcohol feeding. Alcohol-fed L-DRP1 KO mice had increased cytosolic mtDNA and mitochondrial dysfunction leading to increased activation of cGAS-STING-interferon signaling pathways and liver injury. CONCLUSION: Alcohol consumption decreases hepatic DRP1 resulting in increased megamitochondria and mitochondrial maladaptation that promotes AH by mitochondria-mediated inflammation and cell injury.


Asunto(s)
Hepatitis Alcohólica , Hepatopatías Alcohólicas , Ratones , Humanos , Animales , Dilatación Mitocondrial , Hepatopatías Alcohólicas/metabolismo , Mitocondrias/metabolismo , Etanol/toxicidad , Nucleotidiltransferasas , Inflamación , Interferones , Dinámicas Mitocondriales
15.
Cell Rep ; 41(11): 111818, 2022 12 13.
Artículo en Inglés | MEDLINE | ID: mdl-36516772

RESUMEN

Oncogenic KRas activates mitochondrial fission through Erk-mediated phosphorylation of the mitochondrial fission GTPase Drp1. Drp1 deletion inhibits tumorigenesis of KRas-driven pancreatic cancer, but the role of mitochondrial dynamics in other Ras-driven malignancies is poorly defined. Here we show that in vitro and in vivo growth of KRas-driven lung adenocarcinoma is unaffected by deletion of Drp1 but is inhibited by deletion of Opa1, the GTPase that regulates inner membrane fusion and proper cristae morphology. Mechanistically, Opa1 knockout disrupts cristae morphology and inhibits electron transport chain (ETC) assembly and activity, which inhibits tumor cell proliferation through loss of NAD+ regeneration. Simultaneous inactivation of Drp1 and Opa1 restores cristae morphology, ETC activity, and cell proliferation indicating that mitochondrial fission activity drives ETC dysfunction induced by Opa1 knockout. Our results support a model in which mitochondrial fission events disrupt cristae structure, and tumor cells with hyperactive fission activity require Opa1 activity to maintain ETC function.


Asunto(s)
Adenocarcinoma del Pulmón , NAD , Humanos , NAD/metabolismo , Mitocondrias/metabolismo , GTP Fosfohidrolasas/genética , GTP Fosfohidrolasas/metabolismo , Membranas Mitocondriales/metabolismo , Dinámicas Mitocondriales , Adenocarcinoma del Pulmón/genética , Adenocarcinoma del Pulmón/metabolismo , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Dinaminas/metabolismo , Proteínas Proto-Oncogénicas p21(ras)/genética , Proteínas Proto-Oncogénicas p21(ras)/metabolismo
17.
MicroPubl Biol ; 20222022.
Artículo en Inglés | MEDLINE | ID: mdl-36320616

RESUMEN

Opatic atrophy 1 (Opa1) is a mitochondrial GTPase that regulates mitochondrial fusion and maintenance of cristae architecture. Osteoclasts are mitochondrial rich-cells. However, the role of Opa1 in osteoclasts remains unclear. Here, we demonstrate that Opa1- deficient osteoclast precursor cells do not undergo efficient osteoclast differentiation and exhibit abnormal cristae morphology. Thus, Opa1 is a key factor in osteoclast differentiation through regulation of mitochondrial dynamics.

18.
Nature ; 610(7932): 555-561, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36171294

RESUMEN

CD4+ T cell differentiation requires metabolic reprogramming to fulfil the bioenergetic demands of proliferation and effector function, and enforce specific transcriptional programmes1-3. Mitochondrial membrane dynamics sustains mitochondrial processes4, including respiration and tricarboxylic acid (TCA) cycle metabolism5, but whether mitochondrial membrane remodelling orchestrates CD4+ T cell differentiation remains unclear. Here we show that unlike other CD4+ T cell subsets, T helper 17 (TH17) cells have fused mitochondria with tight cristae. T cell-specific deletion of optic atrophy 1 (OPA1), which regulates inner mitochondrial membrane fusion and cristae morphology6, revealed that TH17 cells require OPA1 for its control of the TCA cycle, rather than respiration. OPA1 deletion amplifies glutamine oxidation, leading to impaired NADH/NAD+ balance and accumulation of TCA cycle metabolites and 2-hydroxyglutarate-a metabolite that influences the epigenetic landscape5,7. Our multi-omics approach revealed that the serine/threonine kinase liver-associated kinase B1 (LKB1) couples mitochondrial function to cytokine expression in TH17 cells by regulating TCA cycle metabolism and transcriptional remodelling. Mitochondrial membrane disruption activates LKB1, which restrains IL-17 expression. LKB1 deletion restores IL-17 expression in TH17 cells with disrupted mitochondrial membranes, rectifying aberrant TCA cycle glutamine flux, balancing NADH/NAD+ and preventing 2-hydroxyglutarate production from the promiscuous activity of the serine biosynthesis enzyme phosphoglycerate dehydrogenase (PHGDH). These findings identify OPA1 as a major determinant of TH17 cell function, and uncover LKB1 as a sensor linking mitochondrial cues to effector programmes in TH17 cells.


Asunto(s)
Proteínas Quinasas Activadas por AMP , Mitocondrias , Células Th17 , Glutamina/metabolismo , Interleucina-17/metabolismo , Mitocondrias/metabolismo , NAD/metabolismo , Fosfoglicerato-Deshidrogenasa/metabolismo , Serina/biosíntesis , Serina/metabolismo , Células Th17/citología , Células Th17/inmunología , Células Th17/metabolismo , Proteínas Quinasas Activadas por AMP/metabolismo , Ciclo del Ácido Cítrico , GTP Fosfohidrolasas/deficiencia , GTP Fosfohidrolasas/genética , GTP Fosfohidrolasas/metabolismo
19.
Sci Adv ; 8(24): eabl8070, 2022 06 17.
Artículo en Inglés | MEDLINE | ID: mdl-35704569

RESUMEN

Eggs contain about 200,000 mitochondria that generate adenosine triphosphate and metabolites essential for oocyte development. Mitochondria also integrate metabolism and transcription via metabolites that regulate epigenetic modifiers, but there is no direct evidence linking oocyte mitochondrial function to the maternal epigenome and subsequent embryo development. Here, we have disrupted oocyte mitochondrial function via deletion of the mitochondrial fission factor Drp1. Fission-deficient oocytes exhibit a high frequency of failure in peri- and postimplantation development. This is associated with altered mitochondrial function, changes in the oocyte transcriptome and proteome, altered subcortical maternal complex, and a decrease in oocyte DNA methylation and H3K27me3. Transplanting pronuclei of fertilized Drp1 knockout oocytes to normal ooplasm fails to rescue embryonic lethality. We conclude that mitochondrial function plays a role in establishing the maternal epigenome, with serious consequences for embryo development.


Asunto(s)
Desarrollo Embrionario , Oocitos , Citoplasma/metabolismo , Dinaminas/genética , Dinaminas/metabolismo , Desarrollo Embrionario/genética , Femenino , Humanos , Mitocondrias/metabolismo , Oocitos/metabolismo , Embarazo
20.
Dev Cell ; 57(11): 1316-1330.e7, 2022 06 06.
Artículo en Inglés | MEDLINE | ID: mdl-35597240

RESUMEN

The changes that drive differentiation facilitate the emergence of abnormal cells that need to be removed before they contribute to further development or the germline. Consequently, in mice in the lead-up to gastrulation, ∼35% of embryonic cells are eliminated. This elimination is caused by hypersensitivity to apoptosis, but how it is regulated is poorly understood. Here, we show that upon exit of naive pluripotency, mouse embryonic stem cells lower their mitochondrial apoptotic threshold, and this increases their sensitivity to cell death. We demonstrate that this enhanced apoptotic response is induced by a decrease in mitochondrial fission due to a reduction in the activity of dynamin-related protein 1 (DRP1). Furthermore, we show that in naive pluripotent cells, DRP1 prevents apoptosis by promoting mitophagy. In contrast, during differentiation, reduced mitophagy levels facilitate apoptosis. Together, these results indicate that during early mammalian development, DRP1 regulation of mitophagy determines the apoptotic response.


Asunto(s)
Dinaminas/metabolismo , Mitofagia , Animales , Apoptosis/fisiología , Mamíferos/metabolismo , Ratones , Mitocondrias/metabolismo , Dinámicas Mitocondriales/fisiología , Mitofagia/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...