Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Nanoscale ; 16(6): 2983-2992, 2024 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-38259163

RESUMEN

A myocardial infarction (MI), commonly called a heart attack, results in the death of cardiomyocytes (CMs) in the heart. Tissue engineering provides a promising strategy for the treatment of MI, but the maturation of human engineered cardiac tissue (hECT) still requires improvement. Conductive polymers and nanomaterials have been incorporated into the extracellular matrix to enhance the mechanical and electrical coupling between cardiac cells. Here we report a simple approach to incorporate gold nanorods (GNRs) into the fibrin hydrogel to form a GNR-fibrin matrix, which is used as the major component of the extracellular matrix for forming a 3D hECT construct suspended between two flexible posts. The hECTs made with GNR-fibrin hydrogel showed markers of maturation such as higher twitch force, synchronous beating activity, sarcomere maturation and alignment, t-tubule network development, and calcium handling improvement. Most importantly, the GNR-hECTs can survive over 9 months. We envision that the hECT with GNRs holds the potential to restore the functionality of the infarcted heart.


Asunto(s)
Infarto del Miocardio , Nanotubos , Humanos , Ingeniería de Tejidos , Oro , Miocitos Cardíacos , Matriz Extracelular , Hidrogeles , Infarto del Miocardio/terapia , Fibrina
2.
Nanoscale ; 15(24): 10360-10370, 2023 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-37291990

RESUMEN

Understanding myocytes' spatiotemporal mechanical behavior and viscoelasticity is a long-standing challenge as it plays a critical role in regulating structural and functional homeostasis. To probe the time-dependent viscoelastic behaviors of cardiomyocytes with cross-linked polymer networks, we measure stem cell-derived cardiomyocyte's (hiPSC-CM) deformation, adhesion, and contractility using atomic force microscopy (AFM) nanoindentation, fluidic micropipette, and digital image correlation (DIC). Our results show a cytoplasm load of 7-14 nN, a de-adhesion force of 0.1-1 nN, and an adhesion force between two hiPSC-CMs of 50-100 nN with an interface energy of 0.45 pJ. Based on the load-displacement curve, we model its dynamic viscoelasticity and discover its intimate associations with physiological properties. Cell detaching and contractile modeling demonstrate cell-cell adhesion and beating related strains manifesting viscoelastic behavior, highlighting viscoelasticity plays the primary role in governing hiPSC-CM spatiotemporal mechanics and functions. Overall, this study provides valuable information about the mechanical properties, adhesion behaviors, and viscoelasticity of single hiPSC-CM, shedding light on mechanical-structure relationships and their dynamic responses to mechanical stimuli and spontaneous contraction.


Asunto(s)
Células Madre Pluripotentes Inducidas , Miocitos Cardíacos , Fenómenos Mecánicos , Microscopía de Fuerza Atómica/métodos , Adhesión Celular
3.
ACS Biomater Sci Eng ; 9(3): 1644-1655, 2023 03 13.
Artículo en Inglés | MEDLINE | ID: mdl-36765460

RESUMEN

Human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) show immature features, but these are improved by integration into 3D cardiac constructs. In addition, it has been demonstrated that physical manipulations such as electrical stimulation (ES) are highly effective in improving the maturation of human-engineered cardiac tissue (hECT) derived from hiPSC-CMs. Here, we continuously applied an ES in capacitive coupling configuration, which is below the pacing threshold, to millimeter-sized hECTs for 1-2 weeks. Meanwhile, the structural and functional developments of the hECTs were monitored and measured using an array of assays. Of particular note, a nanoscale imaging technique, scanning ion conductance microscopy (SICM), has been used to directly image membrane remodeling of CMs at different locations on the tissue surface. Periodic crest/valley patterns with a distance close to the sarcomere length appeared on the membrane of CMs near the edge of the tissue after ES, suggesting the enhanced transverse tubulation network. The SICM observation is also supported by the fluorescence images of the transverse tubulation network and α-actinin. Correspondingly, essential cardiac functions such as calcium handling and contraction force generation were improved. Our study provides evidence that chronic subthreshold ES can still improve the structural and functional developments of hECTs.


Asunto(s)
Células Madre Pluripotentes Inducidas , Ingeniería de Tejidos , Humanos , Ingeniería de Tejidos/métodos , Miocitos Cardíacos/fisiología , Calcio/farmacología , Estimulación Eléctrica
4.
Faraday Discuss ; 233(0): 315-335, 2022 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-34889345

RESUMEN

The intracellular delivery of biomolecules and nanoscale materials to individual cells has gained remarkable attention in recent years owing to its wide applications in drug delivery, clinical diagnostics, bio-imaging and single-cell analysis. It remains a challenge to control and measure the delivered amount in one cell. In this work, we developed a multifunctional nanopipette - containing both a nanopore and nanoelectrode (pyrolytic carbon) at the apex - as a facile, minimally invasive and effective platform for both controllable single-cell intracellular delivery and single-entity counting. While controlled by a micromanipulator, the baseline changes of the nanopore ionic current (I) and nanoelectrode open circuit potential (V) help to guide the nanopipette tip insertion and positioning processes. The delivery from the nanopore barrel can be facilely controlled by the applied nanopore bias. To optimize the intracellular single-entity detection during delivery, we studied the effects of the nanopipette tip geometry and solution salt concentration in controlled experiments. We have successfully delivered gold nanoparticles and biomolecules into the cell, as confirmed by the increased scattering and fluorescence signals, respectively. The delivered entities have also been detected at the single-entity level using either one or both transient I and V signals. We found that the sensitivity of the single-entity electrochemical measurement was greatly affected by the local environment of the cell and varied between cell lines.


Asunto(s)
Nanopartículas del Metal , Nanoporos , Oro/química , Análisis de la Célula Individual
5.
Analyst ; 145(14): 4852-4859, 2020 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-32542257

RESUMEN

Glass nanopipettes have shown promise for applications in single-cell manipulation, analysis, and imaging. In recent years, plasmonic nanopipettes have been developed to enable surface-enhanced Raman spectroscopy (SERS) measurements for single-cell analysis. In this work, we developed a SERS-active nanopipette that can be used to perform long-term and reliable intracellular analysis of single living cells with minimal damage, which is achieved by optimizing the nanopipette geometry and the surface density of the gold nanoparticle (AuNP) layer at the nanopipette tip. To demonstrate its ability in single-cell analysis, we used the nanopipette for intracellular pH sensing. Intracellular pH (pHi) is vital to cells as it influences cell function and behavior and pathological conditions. The pH sensitivity was realized by simply modifying the AuNP layer with the pH reporter molecule 4-mercaptobenzoic acid. With a response time of less than 5 seconds, the pH sensing range is from 6.0 to 8.0 and the maximum sensitivity is 0.2 pH units. We monitored the pHi change of individual HeLa and fibroblast cells, triggered by the extracellular pH (pHe) change. The HeLa cancer cells can better resist pHe change and adapt to the weak acidic environment. Plasmonic nanopipettes can be further developed to monitor other intracellular biomarkers.


Asunto(s)
Oro , Nanopartículas del Metal , Células HeLa , Humanos , Concentración de Iones de Hidrógeno , Espectrometría Raman
6.
Comput Biol Med ; 53: 258-64, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25189698

RESUMEN

We analyzed the voltage fluctuations of the membrane potential manifested along the inter-spike segment of a pacemaker neuron. Time series of intracellular inter-spike voltage fluctuations were obtained in the current-clamp configuration from the F1 neuron of 12 Helix aspersa specimens. To assess the dynamic or stochastic nature of the voltage fluctuations these series were analyzed by Detrended Fluctuation Analysis (DFA), providing the scaling exponent α. The median α result obtained for the inter-spike segments was 0.971 ([0.963, 0.995] lower and upper quartiles). Our results indicate a critical-like dynamic behavior in the inter-spike membrane potential that, far from being random, shows long-term correlations probably linked to the dynamics of the mechanisms involved in the regulation of the membrane potential, thereby endorsing the occurrence of critical-like phenomena at a single-neuron level.


Asunto(s)
Caracoles Helix/citología , Potenciales de la Membrana/fisiología , Modelos Neurológicos , Neuronas/fisiología , Animales , Biología Computacional , Electrofisiología , Fractales , Relación Señal-Ruido
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA