Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 68
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Microbiol Resour Announc ; 12(10): e0054823, 2023 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-37712678

RESUMEN

Xenorhabdus species are bacterial symbionts of entomopathogenic Steinernema nematodes, in which they produce diverse secondary metabolites implicated in pathogenesis. To expand resources for natural product prospecting and exploration of host-symbiont-pathogen relationships, the genomes of Xenorhabdus cabanillasi, Xenorhabdus ehlersii, Xenorhabdus japonica, Xenorhabdus koppenhoeferii, and Xenorhabdus mauleonii were analyzed.

2.
Front Microbiol ; 14: 1082107, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36925474

RESUMEN

Integrated virus genomes (prophages) are commonly found in sequenced bacterial genomes but have rarely been described in detail for rhizobial genomes. Cupriavidus taiwanensis STM 6018 is a rhizobial Betaproteobacteria strain that was isolated in 2006 from a root nodule of a Mimosa pudica host in French Guiana, South America. Here we describe features of the genome of STM 6018, focusing on the characterization of two different types of prophages that have been identified in its genome. The draft genome of STM 6018 is 6,553,639 bp, and consists of 80 scaffolds, containing 5,864 protein-coding genes and 61 RNA genes. STM 6018 contains all the nodulation and nitrogen fixation gene clusters common to symbiotic Cupriavidus species; sharing >99.97% bp identity homology to the nod/nif/noeM gene clusters from C. taiwanensis LMG19424T and "Cupriavidus neocalidonicus" STM 6070. The STM 6018 genome contains the genomes of two prophages: one complete Mu-like capsular phage and one filamentous phage, which integrates into a putative dif site. This is the first characterization of a filamentous phage found within the genome of a rhizobial strain. Further examination of sequenced rhizobial genomes identified filamentous prophage sequences in several Beta-rhizobial strains but not in any Alphaproteobacterial rhizobia.

3.
Nucleic Acids Res ; 51(D1): D723-D732, 2023 01 06.
Artículo en Inglés | MEDLINE | ID: mdl-36382399

RESUMEN

The Integrated Microbial Genomes & Microbiomes system (IMG/M: https://img.jgi.doe.gov/m/) at the Department of Energy (DOE) Joint Genome Institute (JGI) continues to provide support for users to perform comparative analysis of isolate and single cell genomes, metagenomes, and metatranscriptomes. In addition to datasets produced by the JGI, IMG v.7 also includes datasets imported from public sources such as NCBI Genbank, SRA, and the DOE National Microbiome Data Collaborative (NMDC), or submitted by external users. In the past couple years, we have continued our effort to help the user community by improving the annotation pipeline, upgrading the contents with new reference database versions, and adding new analysis functionalities such as advanced scaffold search, Average Nucleotide Identity (ANI) for high-quality metagenome bins, new cassette search, improved gene neighborhood display, and improvements to metatranscriptome data display and analysis. We also extended the collaboration and integration efforts with other DOE-funded projects such as NMDC and DOE Biology Knowledgebase (KBase).


Asunto(s)
Manejo de Datos , Genómica , Genoma Bacteriano , Programas Informáticos , Genoma Arqueal , Bases de Datos Genéticas , Metagenoma
4.
Front Microbiol ; 13: 735911, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35495676

RESUMEN

Although Medicago sativa forms highly effective symbioses with the comparatively acid-sensitive genus Ensifer, its introduction into acid soils appears to have selected for symbiotic interactions with acid-tolerant R. favelukesii strains. Rhizobium favelukesii has the unusual ability of being able to nodulate and fix nitrogen, albeit sub-optimally, not only with M. sativa but also with the promiscuous host Phaseolus vulgaris. Here we describe the genome of R. favelukesii OR191 and genomic features important for the symbiotic interaction with both of these hosts. The OR191 draft genome contained acid adaptation loci, including the highly acid-inducible lpiA/acvB operon and olsC, required for production of lysine- and ornithine-containing membrane lipids, respectively. The olsC gene was also present in other acid-tolerant Rhizobium strains but absent from the more acid-sensitive Ensifer microsymbionts. The OR191 symbiotic genes were in general more closely related to those found in Medicago microsymbionts. OR191 contained the nodA, nodEF, nodHPQ, and nodL genes for synthesis of polyunsaturated, sulfated and acetylated Nod factors that are important for symbiosis with Medicago, but contained a truncated nodG, which may decrease nodulation efficiency with M. sativa. OR191 contained an E. meliloti type BacA, which has been shown to specifically protect Ensifer microsymbionts from Medicago nodule-specific cysteine-rich peptides. The nitrogen fixation genes nifQWZS were present in OR191 and P. vulgaris microsymbionts but absent from E. meliloti-Medicago microsymbionts. The ability of OR191 to nodulate and fix nitrogen symbiotically with P. vulgaris indicates that this host has less stringent requirements for nodulation than M. sativa but may need rhizobial strains that possess nifQWZS for N2-fixation to occur. OR191 possessed the exo genes required for the biosynthesis of succinoglycan, which is required for the Ensifer-Medicago symbiosis. However, 1H-NMR spectra revealed that, in the conditions tested, OR191 exopolysaccharide did not contain a succinyl substituent but instead contained a 3-hydroxybutyrate moiety, which may affect its symbiotic performance with Medicago hosts. These findings provide a foundation for the genetic basis of nodulation requirements and symbiotic effectiveness with different hosts.

5.
Cell Genom ; 2(12): 100213, 2022 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-36778052

RESUMEN

The phylum Actinobacteria includes important human pathogens like Mycobacterium tuberculosis and Corynebacterium diphtheriae and renowned producers of secondary metabolites of commercial interest, yet only a small part of its diversity is represented by sequenced genomes. Here, we present 824 actinobacterial isolate genomes in the context of a phylum-wide analysis of 6,700 genomes including public isolates and metagenome-assembled genomes (MAGs). We estimate that only 30%-50% of projected actinobacterial phylogenetic diversity possesses genomic representation via isolates and MAGs. A comparison of gene functions reveals novel determinants of host-microbe interaction as well as environment-specific adaptations such as potential antimicrobial peptides. We identify plasmids and prophages across isolates and uncover extensive prophage diversity structured mainly by host taxonomy. Analysis of >80,000 biosynthetic gene clusters reveals that horizontal gene transfer and gene loss shape secondary metabolite repertoire across taxa. Our observations illustrate the essential role of and need for high-quality isolate genome sequences.

6.
mSystems ; 6(3)2021 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-34006627

RESUMEN

The DOE Joint Genome Institute (JGI) Metagenome Workflow performs metagenome data processing, including assembly; structural, functional, and taxonomic annotation; and binning of metagenomic data sets that are subsequently included into the Integrated Microbial Genomes and Microbiomes (IMG/M) (I.-M. A. Chen, K. Chu, K. Palaniappan, A. Ratner, et al., Nucleic Acids Res, 49:D751-D763, 2021, https://doi.org/10.1093/nar/gkaa939) comparative analysis system and provided for download via the JGI data portal (https://genome.jgi.doe.gov/portal/). This workflow scales to run on thousands of metagenome samples per year, which can vary by the complexity of microbial communities and sequencing depth. Here, we describe the different tools, databases, and parameters used at different steps of the workflow to help with the interpretation of metagenome data available in IMG and to enable researchers to apply this workflow to their own data. We use 20 publicly available sediment metagenomes to illustrate the computing requirements for the different steps and highlight the typical results of data processing. The workflow modules for read filtering and metagenome assembly are available as a workflow description language (WDL) file (https://code.jgi.doe.gov/BFoster/jgi_meta_wdl). The workflow modules for annotation and binning are provided as a service to the user community at https://img.jgi.doe.gov/submit and require filling out the project and associated metadata descriptions in the Genomes OnLine Database (GOLD) (S. Mukherjee, D. Stamatis, J. Bertsch, G. Ovchinnikova, et al., Nucleic Acids Res, 49:D723-D733, 2021, https://doi.org/10.1093/nar/gkaa983).IMPORTANCE The DOE JGI Metagenome Workflow is designed for processing metagenomic data sets starting from Illumina fastq files. It performs data preprocessing, error correction, assembly, structural and functional annotation, and binning. The results of processing are provided in several standard formats, such as fasta and gff, and can be used for subsequent integration into the Integrated Microbial Genomes and Microbiomes (IMG/M) system where they can be compared to a comprehensive set of publicly available metagenomes. As of 30 July 2020, 7,155 JGI metagenomes have been processed by the DOE JGI Metagenome Workflow. Here, we present a metagenome workflow developed at the JGI that generates rich data in standard formats and has been optimized for downstream analyses ranging from assessment of the functional and taxonomic composition of microbial communities to genome-resolved metagenomics and the identification and characterization of novel taxa. This workflow is currently being used to analyze thousands of metagenomic data sets in a consistent and standardized manner.

8.
Nucleic Acids Res ; 49(D1): D751-D763, 2021 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-33119741

RESUMEN

The Integrated Microbial Genomes & Microbiomes system (IMG/M: https://img.jgi.doe.gov/m/) contains annotated isolate genome and metagenome datasets sequenced at the DOE's Joint Genome Institute (JGI), submitted by external users, or imported from public sources such as NCBI. IMG v 6.0 includes advanced search functions and a new tool for statistical analysis of mixed sets of genomes and metagenome bins. The new IMG web user interface also has a new Help page with additional documentation and webinar tutorials to help users better understand how to use various IMG functions and tools for their research. New datasets have been processed with the prokaryotic annotation pipeline v.5, which includes extended protein family assignments.


Asunto(s)
Análisis de Datos , Manejo de Datos , Bases de Datos Genéticas , Genoma Arqueal , Genoma Microbiano , Metagenoma , ARN Ribosómico 16S/genética , Motor de Búsqueda
10.
Nat Biotechnol ; 39(4): 499-509, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33169036

RESUMEN

The reconstruction of bacterial and archaeal genomes from shotgun metagenomes has enabled insights into the ecology and evolution of environmental and host-associated microbiomes. Here we applied this approach to >10,000 metagenomes collected from diverse habitats covering all of Earth's continents and oceans, including metagenomes from human and animal hosts, engineered environments, and natural and agricultural soils, to capture extant microbial, metabolic and functional potential. This comprehensive catalog includes 52,515 metagenome-assembled genomes representing 12,556 novel candidate species-level operational taxonomic units spanning 135 phyla. The catalog expands the known phylogenetic diversity of bacteria and archaea by 44% and is broadly available for streamlined comparative analyses, interactive exploration, metabolic modeling and bulk download. We demonstrate the utility of this collection for understanding secondary-metabolite biosynthetic potential and for resolving thousands of new host linkages to uncultivated viruses. This resource underscores the value of genome-centric approaches for revealing genomic properties of uncultivated microorganisms that affect ecosystem processes.


Asunto(s)
Archaea/genética , Bacterias/genética , Metabolómica/métodos , Metagenoma , Metagenómica/métodos , Virus/genética , Microbiología del Aire , Animales , Archaea/clasificación , Archaea/aislamiento & purificación , Bacterias/clasificación , Bacterias/aislamiento & purificación , Catálogos como Asunto , Ecosistema , Humanos , Filogenia , Microbiología del Suelo , Virus/aislamiento & purificación , Microbiología del Agua
11.
BMC Genomics ; 21(1): 214, 2020 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-32143559

RESUMEN

BACKGROUND: Cupriavidus strain STM 6070 was isolated from nickel-rich soil collected near Koniambo massif, New Caledonia, using the invasive legume trap host Mimosa pudica. STM 6070 is a heavy metal-tolerant strain that is highly effective at fixing nitrogen with M. pudica. Here we have provided an updated taxonomy for STM 6070 and described salient features of the annotated genome, focusing on heavy metal resistance (HMR) loci and heavy metal efflux (HME) systems. RESULTS: The 6,771,773 bp high-quality-draft genome consists of 107 scaffolds containing 6118 protein-coding genes. ANI values show that STM 6070 is a new species of Cupriavidus. The STM 6070 symbiotic region was syntenic with that of the M. pudica-nodulating Cupriavidus taiwanensis LMG 19424T. In contrast to the nickel and zinc sensitivity of C. taiwanensis strains, STM 6070 grew at high Ni2+ and Zn2+ concentrations. The STM 6070 genome contains 55 genes, located in 12 clusters, that encode HMR structural proteins belonging to the RND, MFS, CHR, ARC3, CDF and P-ATPase protein superfamilies. These HMR molecular determinants are putatively involved in arsenic (ars), chromium (chr), cobalt-zinc-cadmium (czc), copper (cop, cup), nickel (nie and nre), and silver and/or copper (sil) resistance. Seven of these HMR clusters were common to symbiotic and non-symbiotic Cupriavidus species, while four clusters were specific to STM 6070, with three of these being associated with insertion sequences. Within the specific STM 6070 HMR clusters, three novel HME-RND systems (nieIC cep nieBA, czcC2B2A2, and hmxB zneAC zneR hmxS) were identified, which constitute new candidate genes for nickel and zinc resistance. CONCLUSIONS: STM 6070 belongs to a new Cupriavidus species, for which we have proposed the name Cupriavidus neocaledonicus sp. nov.. STM6070 harbours a pSym with a high degree of gene conservation to the pSyms of M. pudica-nodulating C. taiwanensis strains, probably as a result of recent horizontal transfer. The presence of specific HMR clusters, associated with transposase genes, suggests that the selection pressure of the New Caledonian ultramafic soils has driven the specific adaptation of STM 6070 to heavy-metal-rich soils via horizontal gene transfer.


Asunto(s)
Cupriavidus/efectos de los fármacos , Cupriavidus/genética , Metales Pesados/toxicidad , Mimosa/microbiología , Cadmio/metabolismo , Familia de Multigenes , Níquel/toxicidad , Filogenia , ARN Ribosómico 16S/genética , Rhizobium/efectos de los fármacos , Rhizobium/genética , Suelo , Microbiología del Suelo , Simbiosis , Sintenía/genética , Zinc/toxicidad
12.
Microbiome ; 8(1): 22, 2020 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-32061251

RESUMEN

Methanogenesis, a biological process mediated by complex microbial communities, has attracted great attention due to its contribution to global warming and potential in biotechnological applications. The current study unveiled the core microbial methanogenic metabolisms in anaerobic vessel ecosystems by applying combined genome-centric metagenomics and metatranscriptomics. Here, we demonstrate that an enriched natural system, fueled only with acetate, could support a bacteria-dominated microbiota employing a multi-trophic methanogenic process. Moreover, significant changes, in terms of microbial structure and function, were recorded after the system was supplemented with additional H2. Methanosarcina thermophila, the predominant methanogen prior to H2 addition, simultaneously performed acetoclastic, hydrogenotrophic, and methylotrophic methanogenesis. The methanogenic pattern changed after the addition of H2, which immediately stimulated Methanomicrobia-activity and was followed by a slow enrichment of Methanobacteria members. Interestingly, the essential genes involved in the Wood-Ljungdahl pathway were not expressed in bacterial members. The high expression of a glycine cleavage system indicated the activation of alternative metabolic pathways for acetate metabolism, which were reconstructed in the most abundant bacterial genomes. Moreover, as evidenced by predicted auxotrophies, we propose that specific microbes of the community were forming symbiotic relationships, thus reducing the biosynthetic burden of individual members. These results provide new information that will facilitate future microbial ecology studies of interspecies competition and symbiosis in methanogenic niches. Video abstract.


Asunto(s)
Bacterias/metabolismo , Redes y Vías Metabólicas , Metano/biosíntesis , Microbiota , Acetatos/metabolismo , Anaerobiosis , Bacterias/clasificación , Reactores Biológicos , Crecimiento Quimioautotrófico , Ecosistema , Perfilación de la Expresión Génica , Hidrógeno/metabolismo , Metagenómica , Methanosarcina/metabolismo
14.
Environ Microbiome ; 15(1): 2, 2020 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-33902723

RESUMEN

BACKGROUND: Currently, much is unknown about the taxonomic diversity and the mechanisms of methane metabolism in the Florida Everglades ecosystem. The Loxahatchee National Wildlife Refuge is a section of the Florida Everglades that is almost entirely unstudied in regard to taxonomic profiling. This short report analyzes the metagenome of soil samples from this Refuge to investigate the predominant taxa, as well as the abundance of genes involved in environmentally significant metabolic pathways related to methane production (nitrogen fixation and dissimilatory sulfite reduction). METHODS: Shotgun metagenomic sequencing using the Illumina platform was performed on 17 soil samples from four different sites within the Loxahatchee National Wildlife Refuge, and underwent quality control, assembly, and annotation. The soil from each sample was tested for water content and concentrations of organic carbon and nitrogen. RESULTS: The three most common phyla of bacteria for every site were Actinobacteria, Acidobacteria, and Proteobacteria; however, there was variation in relative phylum composition. The most common phylum of Archaea was Euryarchaeota for all sites. Alpha and beta diversity analyses indicated significant congruity in taxonomic diversity in most samples from Sites 1, 3, and 4 and negligible congruity between Site 2 and the other sites. Shotgun metagenomic sequencing revealed the presence of biogeochemical biomarkers of particular interest (e.g., mrcA, nifH, and dsrB) within the samples. The normalized abundances of mcrA, nifH, and dsrB exhibited a positive correlation with nitrogen concentration and water content, and a negative correlation with organic carbon concentration. CONCLUSION: This Everglades soil metagenomic study allowed examination of wetlands biological processes and showed expected correlations between measured organic constituents and prokaryotic gene frequency. Additionally, the taxonomic profile generated gives a basis for the diversity of prokaryotic microbial life throughout the Everglades.

15.
Nucleic Acids Res ; 48(D1): D422-D430, 2020 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-31665416

RESUMEN

Microbial secondary metabolism is a reservoir of bioactive compounds of immense biotechnological and biomedical potential. The biosynthetic machinery responsible for the production of these secondary metabolites (SMs) (also called natural products) is often encoded by collocated groups of genes called biosynthetic gene clusters (BGCs). High-throughput genome sequencing of both isolates and metagenomic samples combined with the development of specialized computational workflows is enabling systematic identification of BGCs and the discovery of novel SMs. In order to advance exploration of microbial secondary metabolism and its diversity, we developed the largest publicly available database of predicted BGCs combined with experimentally verified BGCs, the Integrated Microbial Genomes Atlas of Biosynthetic gene Clusters (IMG-ABC) (https://img.jgi.doe.gov/abc-public). Here we describe the first major content update of the IMG-ABC knowledgebase, since its initial release in 2015, refreshing the BGC prediction pipeline with the latest version of antiSMASH (v5) as well as presenting the data in the context of underlying environmental metadata sourced from GOLD (https://gold.jgi.doe.gov/). This update has greatly improved the quality and expanded the types of predicted BGCs compared to the previous version.


Asunto(s)
Vías Biosintéticas/genética , Bases de Datos Genéticas , Genoma Microbiano , Familia de Multigenes , Metabolismo Secundario/genética , Bacteriocinas/biosíntesis , Bacteriocinas/genética , Bases del Conocimiento , Metadatos , Metagenoma , Interfaz Usuario-Computador
16.
Nature ; 568(7753): 505-510, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30867587

RESUMEN

The genome sequences of many species of the human gut microbiome remain unknown, largely owing to challenges in cultivating microorganisms under laboratory conditions. Here we address this problem by reconstructing 60,664 draft prokaryotic genomes from 3,810 faecal metagenomes, from geographically and phenotypically diverse humans. These genomes provide reference points for 2,058 newly identified species-level operational taxonomic units (OTUs), which represents a 50% increase over the previously known phylogenetic diversity of sequenced gut bacteria. On average, the newly identified OTUs comprise 33% of richness and 28% of species abundance per individual, and are enriched in humans from rural populations. A meta-analysis of clinical gut-microbiome studies pinpointed numerous disease associations for the newly identified OTUs, which have the potential to improve predictive models. Finally, our analysis revealed that uncultured gut species have undergone genome reduction that has resulted in the loss of certain biosynthetic pathways, which may offer clues for improving cultivation strategies in the future.


Asunto(s)
Bacterias/clasificación , Bacterias/genética , Microbioma Gastrointestinal/genética , Genoma Bacteriano/genética , Metagenoma/genética , Bacterias/crecimiento & desarrollo , Bacterias/aislamiento & purificación , Fenómenos Fisiológicos Bacterianos/genética , Vías Biosintéticas/genética , Enfermedad , Heces/microbiología , Microbioma Gastrointestinal/fisiología , Genómica , Mapeo Geográfico , Humanos , Filogenia , Población Rural , Especificidad de la Especie
17.
Front Microbiol ; 10: 208, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30853946

RESUMEN

Microbial genome web portals have a broad range of capabilities that address a number of information-finding and analysis needs for scientists. This article compares the capabilities of the major microbial genome web portals to aid researchers in determining which portal(s) are best suited to their needs. We assessed both the bioinformatics tools and the data content of BioCyc, KEGG, Ensembl Bacteria, KBase, IMG, and PATRIC. For each portal, our assessment compared and tallied the available capabilities. The strengths of BioCyc include its genomic and metabolic tools, multi-search capabilities, table-based analysis tools, regulatory network tools and data, omics data analysis tools, breadth of data content, and large amount of curated data. The strengths of KEGG include its genomic and metabolic tools. The strengths of Ensembl Bacteria include its genomic tools and large number of genomes. The strengths of KBase include its genomic tools and metabolic models. The strengths of IMG include its genomic tools, multi-search capabilities, large number of genomes, table-based analysis tools, and breadth of data content. The strengths of PATRIC include its large number of genomes, table-based analysis tools, metabolic models, and breadth of data content.

18.
Nucleic Acids Res ; 47(D1): D666-D677, 2019 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-30289528

RESUMEN

The Integrated Microbial Genomes & Microbiomes system v.5.0 (IMG/M: https://img.jgi.doe.gov/m/) contains annotated datasets categorized into: archaea, bacteria, eukarya, plasmids, viruses, genome fragments, metagenomes, cell enrichments, single particle sorts, and metatranscriptomes. Source datasets include those generated by the DOE's Joint Genome Institute (JGI), submitted by external scientists, or collected from public sequence data archives such as NCBI. All submissions are typically processed through the IMG annotation pipeline and then loaded into the IMG data warehouse. IMG's web user interface provides a variety of analytical and visualization tools for comparative analysis of isolate genomes and metagenomes in IMG. IMG/M allows open access to all public genomes in the IMG data warehouse, while its expert review (ER) system (IMG/MER: https://img.jgi.doe.gov/mer/) allows registered users to access their private genomes and to store their private datasets in workspace for sharing and for further analysis. IMG/M data content has grown by 60% since the last report published in the 2017 NAR Database Issue. IMG/M v.5.0 has a new and more powerful genome search feature, new statistical tools, and supports metagenome binning.


Asunto(s)
Manejo de Datos/métodos , Bases de Datos Genéticas , Genómica/métodos , Metagenoma , Microbiota , Programas Informáticos , Anotación de Secuencia Molecular/métodos , Alineación de Secuencia/métodos
19.
Anim Microbiome ; 1(1): 15, 2019 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-33499937

RESUMEN

BACKGROUND: Digestive processes in the rumen lead to the release of methyl-compounds, mainly methanol and methylamines, which are used by methyltrophic methanogens to form methane, an important agricultural greenhouse gas. Methylamines are produced from plant phosphatidylcholine degradation, by choline trimethylamine lyase, while methanol comes from demethoxylation of dietary pectins via pectin methylesterase activity. We have screened rumen metagenomic and metatranscriptomic datasets, metagenome assembled genomes, and the Hungate1000 genomes to identify organisms capable of producing methyl-compounds. We also describe the enrichment of pectin-degrading and methane-forming microbes from sheep rumen contents and the analysis of their genomes via metagenomic assembly. RESULTS: Screens of metagenomic data using the protein domains of choline trimethylamine lyase (CutC), and activator protein (CutD) found good matches only to Olsenella umbonata and to Caecibacter, while the Hungate1000 genomes and metagenome assembled genomes from the cattle rumen found bacteria within the phyla Actinobacteria, Firmicutes and Proteobacteria. The cutC and cutD genes clustered with genes that encode structural components of bacterial microcompartment proteins. Prevotella was the dominant genus encoding pectin methyl esterases, with smaller numbers of sequences identified from other fibre-degrading rumen bacteria. Some large pectin methyl esterases (> 2100 aa) were found to be encoded in Butyrivibrio genomes. The pectin-utilising, methane-producing consortium was composed of (i) a putative pectin-degrading bacterium (phylum Tenericutes, class Mollicutes), (ii) a galacturonate-using Sphaerochaeta sp. predicted to produce acetate, lactate, and ethanol, and (iii) a methylotrophic methanogen, Methanosphaera sp., with the ability to form methane via a primary ethanol-dependent, hydrogen-independent, methanogenesis pathway. CONCLUSIONS: The main bacteria that produce methyl-compounds have been identified in ruminants. Their enzymatic activities can now be targeted with the aim of finding ways to reduce the supply of methyl-compound substrates to methanogens, and thereby limit methylotrophic methanogenesis in the rumen.

20.
Nat Biotechnol ; 36(4): 359-367, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29553575

RESUMEN

Productivity of ruminant livestock depends on the rumen microbiota, which ferment indigestible plant polysaccharides into nutrients used for growth. Understanding the functions carried out by the rumen microbiota is important for reducing greenhouse gas production by ruminants and for developing biofuels from lignocellulose. We present 410 cultured bacteria and archaea, together with their reference genomes, representing every cultivated rumen-associated archaeal and bacterial family. We evaluate polysaccharide degradation, short-chain fatty acid production and methanogenesis pathways, and assign specific taxa to functions. A total of 336 organisms were present in available rumen metagenomic data sets, and 134 were present in human gut microbiome data sets. Comparison with the human microbiome revealed rumen-specific enrichment for genes encoding de novo synthesis of vitamin B12, ongoing evolution by gene loss and potential vertical inheritance of the rumen microbiome based on underrepresentation of markers of environmental stress. We estimate that our Hungate genome resource represents ∼75% of the genus-level bacterial and archaeal taxa present in the rumen.


Asunto(s)
Archaea/genética , Bacterias/genética , Microbioma Gastrointestinal/genética , Rumen/microbiología , Animales , Archaea/clasificación , Archaea/metabolismo , Bacterias/clasificación , Bacterias/metabolismo , Biocombustibles , Humanos , Lignina/química , Lignina/genética , Microbiota/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...