Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 232
Filtrar
1.
J Clin Invest ; 134(4)2024 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-38175710

RESUMEN

Blood vessels are continually exposed to circulating lipids, and elevation of ApoB-containing lipoproteins causes atherosclerosis. Lipoprotein metabolism is highly regulated by lipolysis, largely at the level of the capillary endothelium lining metabolically active tissues. How large blood vessels, the site of atherosclerotic vascular disease, regulate the flux of fatty acids (FAs) into triglyceride-rich (TG-rich) lipid droplets (LDs) is not known. In this study, we showed that deletion of the enzyme adipose TG lipase (ATGL) in the endothelium led to neutral lipid accumulation in vessels and impaired endothelial-dependent vascular tone and nitric oxide synthesis to promote endothelial dysfunction. Mechanistically, the loss of ATGL led to endoplasmic reticulum stress-induced inflammation in the endothelium. Consistent with this mechanism, deletion of endothelial ATGL markedly increased lesion size in a model of atherosclerosis. Together, these data demonstrate that the dynamics of FA flux through LD affects endothelial cell homeostasis and consequently large vessel function during normal physiology and in a chronic disease state.


Asunto(s)
Aterosclerosis , Lipasa , Ratones , Animales , Triglicéridos/metabolismo , Lipasa/genética , Lipasa/metabolismo , Lipólisis , Metabolismo de los Lípidos , Endotelio Vascular/metabolismo , Aterosclerosis/genética , Aterosclerosis/metabolismo
2.
Front Cardiovasc Med ; 10: 1279868, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38034389

RESUMEN

Objective: We have previously demonstrated the in vivo importance of the Akt-eNOS substrate-kinase relationship, as defective postnatal angiogenesis characteristic of global Akt1-null mice is rescued when bred to 'gain-of-function' eNOS S1176D mutant mice. While multiple studies support the vascular protective role of endothelial NO generation, the causal role of Akt1-dependent eNOS S1176 phosphorylation during atherosclerotic plaque formation is not yet clear. Approach and results: We herein bred congenic 'loss-of-function' eNOS S1176A and 'gain-of-function' eNOS S1176D mutant mice to the exacerbated atherogenic Akt1-/-; ApoE-/- double knockout mice to definitively test the importance of Akt-mediated eNOS S1176 phosphorylation during atherogenesis. We find that a single amino acid substitution at the eNOS S1176 phosphorylation site yields divergent effects on atherosclerotic plaque formation, as an eNOS phospho-mimic aspartate (D) substitution at S1176 leads to favorable lipid profiles and decreased indices of atherosclerosis, even when on a proatherogenic Akt1 global deletion background. Conversely, mice harboring an unphosphorylatable mutation to alanine (S1176A) result in increased plasma lipids, increased lesion formation and cellular apoptosis, phenocopying the physiological consequence of eNOS deletion and/or impaired enzyme function. Furthermore, gene expression analyses of whole aortas indicate a combinatorial detriment from NO deficiency and Western Diet challenge, as 'loss-of-function' eNOS S1176A mice on a Western Diet present a unique expression pattern indicative of augmented T-cell activity when compared to eNOS S1176D mice. Conclusions: By using genetic epistasis approaches, we conclusively demonstrate that Akt-mediated eNOS S1176 phosphorylation and subsequent eNOS activation remains to be the most physiologically relevant method of NO production to promote athero-protective effects.

3.
bioRxiv ; 2023 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-38014178

RESUMEN

Obesity-linked fatty liver is a significant risk factor for hepatocellular carcinoma (HCC)1,2; however, the molecular mechanisms underlying the transition from non-alcoholic fatty liver disease (NAFLD) to HCC remains unclear. The present study explores the role of the endoplasmic reticulum (ER)-associated protein NgBR, an essential component of the cis-prenyltransferases (cis-PTase) enzyme3, in chronic liver disease. Here we show that genetic depletion of NgBR in hepatocytes of mice (N-LKO) intensifies triacylglycerol (TAG) accumulation, inflammatory responses, ER/oxidative stress, and liver fibrosis, ultimately resulting in HCC development with 100% penetrance after four months on a high-fat diet. Comprehensive genomic and single cell transcriptomic atlas from affected livers provides a detailed molecular analysis of the transition from liver pathophysiology to HCC development. Importantly, pharmacological inhibition of diacylglycerol acyltransferase-2 (DGAT2), a key enzyme in hepatic TAG synthesis, abrogates diet-induced liver damage and HCC burden in N-LKO mice. Overall, our findings establish NgBR/cis-PTase as a critical suppressor of NAFLD-HCC conversion and suggests that DGAT2 inhibition may serve as a promising therapeutic approach to delay HCC formation in patients with advanced non-alcoholic steatohepatitis (NASH).

4.
Proc Natl Acad Sci U S A ; 120(38): e2218150120, 2023 09 19.
Artículo en Inglés | MEDLINE | ID: mdl-37695914

RESUMEN

The endothelium is a major target of the proinflammatory cytokine, tumor necrosis factor alpha (TNFα). Exposure of endothelial cells (EC) to proinflammatory stimuli leads to an increase in mitochondrial metabolism; however, the function and regulation of elevated mitochondrial metabolism in EC in response to proinflammatory cytokines remain unclear. Studies using high-resolution metabolomics and 13C-glucose and 13C-glutamine labeling flux techniques showed that pyruvate dehydrogenase activity (PDH) and oxidative tricarboxylic acid cycle (TCA) flux are elevated in human umbilical vein ECs in response to overnight (16 h) treatment with TNFα (10 ng/mL). Mechanistic studies indicated that TNFα mediated these metabolic changes via mitochondrial-specific protein degradation of pyruvate dehydrogenase kinase 4 (PDK4, inhibitor of PDH) by the Lon protease via an NF-κB-dependent mechanism. Using RNA sequencing following siRNA-mediated knockdown of the catalytically active subunit of PDH, PDHE1α (PDHA1 gene), we show that PDH flux controls the transcription of approximately one-third of the genes that are up-regulated by TNFα stimulation. Notably, TNFα-induced PDH flux regulates a unique signature of proinflammatory mediators (cytokines and chemokines) but not inducible adhesion molecules. Metabolomics and ChIP sequencing for acetylated modification on lysine 27 of histone 3 (H3K27ac) showed that TNFα-induced PDH flux promotes histone acetylation of specific gene loci via citrate accumulation and ATP-citrate lyase-mediated generation of acetyl CoA. Together, these results uncover a mechanism by which TNFα signaling increases oxidative TCA flux of glucose to support TNFα-induced gene transcription through extramitochondrial acetyl CoA generation and histone acetylation.


Asunto(s)
Proteasa La , Factor de Necrosis Tumoral alfa , Humanos , Factor de Necrosis Tumoral alfa/farmacología , Acetilcoenzima A , Células Endoteliales , Histonas , Citocinas
5.
J Lipid Res ; 64(8): 100411, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37437844

RESUMEN

The transcription factor SREBP2 is the main regulator of cholesterol homeostasis and is central to the mechanism of action of lipid-lowering drugs, such as statins, which are responsible for the largest overall reduction in cardiovascular risk and mortality in humans with atherosclerotic disease. Recently, SREBP2 has been implicated in leukocyte innate and adaptive immune responses by upregulation of cholesterol flux or direct transcriptional activation of pro-inflammatory genes. Here, we investigate the role of SREBP2 in endothelial cells (ECs), since ECs are at the interface of circulating lipids with tissues and crucial to the pathogenesis of cardiovascular disease. Loss of SREBF2 inhibits the production of pro-inflammatory chemokines but amplifies type I interferon response genes in response to inflammatory stimulus. Furthermore, SREBP2 regulates chemokine expression not through enhancement of endogenous cholesterol synthesis or lipoprotein uptake but partially through direct transcriptional activation. Chromatin immunoprecipitation sequencing of endogenous SREBP2 reveals that SREBP2 bound to the promoter regions of two nonclassical sterol responsive genes involved in immune modulation, BHLHE40 and KLF6. SREBP2 upregulation of KLF6 was responsible for the downstream amplification of chemokine expression, highlighting a novel relationship between cholesterol homeostasis and inflammatory phenotypes in ECs.


Asunto(s)
Citocinas , Células Endoteliales , Humanos , Activación Transcripcional , Células Endoteliales/metabolismo , Citocinas/metabolismo , Colesterol/metabolismo , Factores de Transcripción/metabolismo , Proteína 2 de Unión a Elementos Reguladores de Esteroles/genética , Proteína 2 de Unión a Elementos Reguladores de Esteroles/metabolismo , Factor 6 Similar a Kruppel/genética , Factor 6 Similar a Kruppel/metabolismo
6.
Nat Commun ; 14(1): 3803, 2023 06 26.
Artículo en Inglés | MEDLINE | ID: mdl-37365174

RESUMEN

The serine/threonine kinase AKT is a central node in cell signaling. While aberrant AKT activation underlies the development of a variety of human diseases, how different patterns of AKT-dependent phosphorylation dictate downstream signaling and phenotypic outcomes remains largely enigmatic. Herein, we perform a systems-level analysis that integrates methodological advances in optogenetics, mass spectrometry-based phosphoproteomics, and bioinformatics to elucidate how different intensity, duration, and pattern of Akt1 stimulation lead to distinct temporal phosphorylation profiles in vascular endothelial cells. Through the analysis of ~35,000 phosphorylation sites across multiple conditions precisely controlled by light stimulation, we identify a series of signaling circuits activated downstream of Akt1 and interrogate how Akt1 signaling integrates with growth factor signaling in endothelial cells. Furthermore, our results categorize kinase substrates that are preferably activated by oscillating, transient, and sustained Akt1 signals. We validate a list of phosphorylation sites that covaried with Akt1 phosphorylation across experimental conditions as potential Akt1 substrates. Our resulting dataset provides a rich resource for future studies on AKT signaling and dynamics.


Asunto(s)
Células Endoteliales , Proteínas Proto-Oncogénicas c-akt , Humanos , Proteínas Proto-Oncogénicas c-akt/metabolismo , Células Endoteliales/metabolismo , Optogenética , Transducción de Señal , Proteínas Serina-Treonina Quinasas/metabolismo , Fosforilación
7.
Circulation ; 147(5): 388-408, 2023 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-36416142

RESUMEN

BACKGROUND: Cross-talk between sterol metabolism and inflammatory pathways has been demonstrated to significantly affect the development of atherosclerosis. Cholesterol biosynthetic intermediates and derivatives are increasingly recognized as key immune regulators of macrophages in response to innate immune activation and lipid overloading. 25-Hydroxycholesterol (25-HC) is produced as an oxidation product of cholesterol by the enzyme cholesterol 25-hydroxylase (CH25H) and belongs to a family of bioactive cholesterol derivatives produced by cells in response to fluctuating cholesterol levels and immune activation. Despite the major role of 25-HC as a mediator of innate and adaptive immune responses, its contribution during the progression of atherosclerosis remains unclear. METHODS: The levels of 25-HC were analyzed by liquid chromatography-mass spectrometry, and the expression of CH25H in different macrophage populations of human or mouse atherosclerotic plaques, respectively. The effect of CH25H on atherosclerosis progression was analyzed by bone marrow adoptive transfer of cells from wild-type or Ch25h-/- mice to lethally irradiated Ldlr-/- mice, followed by a Western diet feeding for 12 weeks. Lipidomic, transcriptomic analysis and effects on macrophage function and signaling were analyzed in vitro from lipid-loaded macrophage isolated from Ldlr-/- or Ch25h-/-;Ldlr-/- mice. The contribution of secreted 25-HC to fibrous cap formation was analyzed using a smooth muscle cell lineage-tracing mouse model, Myh11ERT2CREmT/mG;Ldlr-/-, adoptively transferred with wild-type or Ch25h-/- mice bone marrow followed by 12 weeks of Western diet feeding. RESULTS: We found that 25-HC accumulated in human coronary atherosclerotic lesions and that macrophage-derived 25-HC accelerated atherosclerosis progression, promoting plaque instability through autocrine and paracrine actions. 25-HC amplified the inflammatory response of lipid-loaded macrophages and inhibited the migration of smooth muscle cells within the plaque. 25-HC intensified inflammatory responses of lipid-laden macrophages by modifying the pool of accessible cholesterol in the plasma membrane, which altered Toll-like receptor 4 signaling, promoted nuclear factor-κB-mediated proinflammatory gene expression, and increased apoptosis susceptibility. These effects were independent of 25-HC-mediated modulation of liver X receptor or SREBP (sterol regulatory element-binding protein) transcriptional activity. CONCLUSIONS: Production of 25-HC by activated macrophages amplifies their inflammatory phenotype, thus promoting atherogenesis.


Asunto(s)
Aterosclerosis , Placa Aterosclerótica , Humanos , Ratones , Animales , Aterosclerosis/patología , Hidroxicolesteroles/metabolismo , Placa Aterosclerótica/metabolismo , Macrófagos/metabolismo , Colesterol , Inflamación/metabolismo , Ratones Noqueados
8.
Elife ; 112022 08 12.
Artículo en Inglés | MEDLINE | ID: mdl-35959888

RESUMEN

There is a growing appreciation that a tight relationship exists between cholesterol homeostasis and immunity in leukocytes; however, this relationship has not been deeply explored in the vascular endothelium. Endothelial cells (ECs) rapidly respond to extrinsic signals, such as tissue damage or microbial infection, by upregulating factors to activate and recruit circulating leukocytes to the site of injury and aberrant activation of ECs leads to inflammatory based diseases, such as multiple sclerosis and atherosclerosis. Here, we studied the role of cholesterol and a key transcription regulator of cholesterol homeostasis, SREBP2, in the EC responses to inflammatory stress. Treatment of primary human ECs with pro-inflammatory cytokines upregulated SREBP2 cleavage and cholesterol biosynthetic gene expression within the late phase of the acute inflammatory response. Furthermore, SREBP2 activation was dependent on NF-κB DNA binding and canonical SCAP-SREBP2 processing. Mechanistically, inflammatory activation of SREBP was mediated by a reduction in accessible cholesterol, leading to heightened sterol sensing and downstream SREBP2 cleavage. Detailed analysis of NF-κB inducible genes that may impact sterol sensing resulted in the identification of a novel RELA-inducible target, STARD10, that mediates accessible cholesterol homeostasis in ECs. Thus, this study provides an in-depth characterization of the relationship between cholesterol homeostasis and the acute inflammatory response in EC.


Asunto(s)
FN-kappa B , Proteína 2 de Unión a Elementos Reguladores de Esteroles/metabolismo , Colesterol/metabolismo , Células Endoteliales/metabolismo , Humanos , Inflamación , FN-kappa B/metabolismo , Proteína 2 de Unión a Elementos Reguladores de Esteroles/genética , Esteroles , Estrés Fisiológico , Transcripción Genética
9.
Hepatol Commun ; 6(10): 2748-2764, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35852334

RESUMEN

Fluid and bicarbonate secretion is a principal function of cholangiocytes, and impaired secretion results in cholestasis. Cholangiocyte secretion depends on peri-apical expression of the type 3 inositol trisphosphate receptor (ITPR3), and loss of this intracellular Ca2+ release channel is a final common event in most cholangiopathies. Here we investigated the mechanism by which ITPR3 localizes to the apical region to regulate secretion. Isolated bile duct units, primary mouse cholangiocytes, and polarized Madin-Darby canine kidney (MDCK) cells were examined using a combination of biochemical and fluorescence microscopy techniques to investigate the mechanism of ITPR3 targeting to the apical region. Apical localization of ITPR3 depended on the presence of intact lipid rafts as well as interactions with both caveolin 1 (CAV1) and myosin heavy chain 9 (MYH9). Chemical disruption of lipid rafts or knockdown of CAV1 or MYH9 redistributed ITPR3 away from the apical region. MYH9 interacted with the five c-terminal amino acids of the ITPR3 peptide. Disruption of lipid rafts impaired Ca2+ signaling, and absence of CAV1 impaired both Ca2+ signaling and fluid secretion. Conclusion: A cooperative mechanism involving MYH9, CAV1, and apical lipid rafts localize ITPR3 to the apical region to regulate Ca2+ signaling and secretion in cholangiocytes.


Asunto(s)
Señalización del Calcio , Caveolina 1 , Aminoácidos/metabolismo , Animales , Bicarbonatos/metabolismo , Señalización del Calcio/fisiología , Caveolina 1/genética , Perros , Inositol , Receptores de Inositol 1,4,5-Trifosfato/genética , Ratones , Cadenas Pesadas de Miosina/genética
10.
Circulation ; 145(23): 1720-1737, 2022 06 07.
Artículo en Inglés | MEDLINE | ID: mdl-35502657

RESUMEN

BACKGROUND: Vascular smooth muscle cell (VSMC) phenotypic switching contributes to cardiovascular diseases. Epigenetic regulation is emerging as a key regulatory mechanism, with the methylcytosine dioxygenase TET2 acting as a master regulator of smooth muscle cell phenotype. The histone acetyl-transferases p300 and CREB-binding protein (CBP) are highly homologous and often considered to be interchangeable, and their roles in smooth muscle cell phenotypic regulation are not known. METHODS: We assessed the roles of p300 and CBP in human VSMC with knockdown, in inducible smooth muscle-specific knockout mice (inducible knockout [iKO]; p300iKO or CBPiKO), and in samples of human intimal hyperplasia. RESULTS: P300, CBP, and histone acetylation were differently regulated in VSMCs undergoing phenotypic switching and in vessel remodeling after vascular injury. Medial p300 expression and activity were repressed by injury, but CBP and histone acetylation were induced in neointima. Knockdown experiments revealed opposing effects of p300 and CBP in the VSMC phenotype: p300 promoted contractile protein expression and inhibited migration, but CBP inhibited contractile genes and enhanced migration. p300iKO mice exhibited severe intimal hyperplasia after arterial injury compared with controls, whereas CBPiKO mice were entirely protected. In normal aorta, p300iKO reduced, but CBPiKO enhanced, contractile protein expression and contractility compared with controls. Mechanistically, we found that these histone acetyl-transferases oppositely regulate histone acetylation, DNA hydroxymethylation, and PolII (RNA polymerase II) binding to promoters of differentiation-specific contractile genes. Our data indicate that p300 and TET2 function together, because p300 was required for TET2-dependent hydroxymethylation of contractile promoters, and TET2 was required for p300-dependent acetylation of these loci. TET2 coimmunoprecipitated with p300, and this interaction was enhanced by rapamycin but repressed by platelet-derived growth factor (PDGF) treatment, with p300 promoting TET2 protein stability. CBP did not associate with TET2, but instead facilitated recruitment of histone deacetylases (HDAC2, HDAC5) to contractile protein promoters. Furthermore, CBP inhibited TET2 mRNA levels. Immunostaining of cardiac allograft vasculopathy samples revealed that p300 expression is repressed but CBP is induced in human intimal hyperplasia. CONCLUSIONS: This work reveals that p300 and CBP serve nonredundant and opposing functions in VSMC phenotypic switching and coordinately regulate chromatin modifications through distinct functional interactions with TET2 or HDACs. Targeting specific histone acetyl-transferases may hold therapeutic promise for cardiovascular diseases.


Asunto(s)
Enfermedades Cardiovasculares , Músculo Liso Vascular , Factores de Transcripción p300-CBP/metabolismo , Acetilación , Animales , Proteína de Unión a CREB/genética , Proteína de Unión a CREB/metabolismo , Enfermedades Cardiovasculares/metabolismo , Ensamble y Desensamble de Cromatina , Proteínas Contráctiles/metabolismo , Epigénesis Genética , Histonas/metabolismo , Humanos , Hiperplasia/metabolismo , Ratones , Ratones Noqueados , Músculo Liso Vascular/metabolismo , Miocitos del Músculo Liso/metabolismo
11.
J Clin Invest ; 132(6)2022 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-35289308

RESUMEN

Obesity has reached epidemic proportions and is a major contributor to insulin resistance (IR) and type 2 diabetes (T2D). Importantly, IR and T2D substantially increase the risk of cardiovascular (CV) disease. Although there are successful approaches to maintain glycemic control, there continue to be increased CV morbidity and mortality associated with metabolic disease. Therefore, there is an urgent need to understand the cellular and molecular processes that underlie cardiometabolic changes that occur during obesity so that optimal medical therapies can be designed to attenuate or prevent the sequelae of this disease. The vascular endothelium is in constant contact with the circulating milieu; thus, it is not surprising that obesity-driven elevations in lipids, glucose, and proinflammatory mediators induce endothelial dysfunction, vascular inflammation, and vascular remodeling in all segments of the vasculature. As cardiometabolic disease progresses, so do pathological changes in the entire vascular network, which can feed forward to exacerbate disease progression. Recent cellular and molecular data have implicated the vasculature as an initiating and instigating factor in the development of several cardiometabolic diseases. This Review discusses these findings in the context of atherosclerosis, IR and T2D, and heart failure with preserved ejection fraction. In addition, novel strategies to therapeutically target the vasculature to lessen cardiometabolic disease burden are introduced.


Asunto(s)
Aterosclerosis , Enfermedades Cardiovasculares , Diabetes Mellitus Tipo 2 , Resistencia a la Insulina , Aterosclerosis/metabolismo , Aterosclerosis/terapia , Enfermedades Cardiovasculares/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Endotelio Vascular/patología , Humanos , Obesidad/metabolismo
12.
Brain ; 145(1): 208-223, 2022 03 29.
Artículo en Inglés | MEDLINE | ID: mdl-34382076

RESUMEN

Subcellular membrane systems are highly enriched in dolichol, whose role in organelle homeostasis and endosomal-lysosomal pathway remains largely unclear besides being involved in protein glycosylation. DHDDS encodes for the catalytic subunit (DHDDS) of the enzyme cis-prenyltransferase (cis-PTase), involved in dolichol biosynthesis and dolichol-dependent protein glycosylation in the endoplasmic reticulum. An autosomal recessive form of retinitis pigmentosa (retinitis pigmentosa 59) has been associated with a recurrent DHDDS variant. Moreover, two recurring de novo substitutions were detected in a few cases presenting with neurodevelopmental disorder, epilepsy and movement disorder. We evaluated a large cohort of patients (n = 25) with de novo pathogenic variants in DHDDS and provided the first systematic description of the clinical features and long-term outcome of this new neurodevelopmental and neurodegenerative disorder. The functional impact of the identified variants was explored by yeast complementation system and enzymatic assay. Patients presented during infancy or childhood with a variable association of neurodevelopmental disorder, generalized epilepsy, action myoclonus/cortical tremor and ataxia. Later in the disease course, they experienced a slow neurological decline with the emergence of hyperkinetic and/or hypokinetic movement disorder, cognitive deterioration and psychiatric disturbances. Storage of lipidic material and altered lysosomes were detected in myelinated fibres and fibroblasts, suggesting a dysfunction of the lysosomal enzymatic scavenger machinery. Serum glycoprotein hypoglycosylation was not detected and, in contrast to retinitis pigmentosa and other congenital disorders of glycosylation involving dolichol metabolism, the urinary dolichol D18/D19 ratio was normal. Mapping the disease-causing variants into the protein structure revealed that most of them clustered around the active site of the DHDDS subunit. Functional studies using yeast complementation assay and in vitro activity measurements confirmed that these changes affected the catalytic activity of the cis-PTase and showed growth defect in yeast complementation system as compared with the wild-type enzyme and retinitis pigmentosa-associated protein. In conclusion, we characterized a distinctive neurodegenerative disorder due to de novo DHDDS variants, which clinically belongs to the spectrum of genetic progressive encephalopathies with myoclonus. Clinical and biochemical data from this cohort depicted a condition at the intersection of congenital disorders of glycosylation and inherited storage diseases with several features akin to of progressive myoclonus epilepsy such as neuronal ceroid lipofuscinosis and other lysosomal disorders.


Asunto(s)
Transferasas Alquil y Aril , Mioclonía , Enfermedades Neurodegenerativas , Retinitis Pigmentosa , Niño , Dolicoles/metabolismo , Humanos , Enfermedades Neurodegenerativas/genética , Retinitis Pigmentosa/genética
13.
Commun Biol ; 4(1): 1192, 2021 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-34654883

RESUMEN

DHX15 is a downstream substrate for Akt1, which is involved in key cellular processes affecting vascular biology. Here, we explored the vascular regulatory function of DHX15. Homozygous DHX15 gene deficiency was lethal in mouse and zebrafish embryos. DHX15-/- zebrafish also showed downregulation of VEGF-C and reduced formation of lymphatic structures during development. DHX15+/- mice depicted lower vascular density and impaired lymphatic function postnatally. RNAseq and proteome analysis of DHX15 silenced endothelial cells revealed differential expression of genes involved in the metabolism of ATP biosynthesis. The validation of these results demonstrated a lower activity of the Complex I in the mitochondrial membrane of endothelial cells, resulting in lower intracellular ATP production and lower oxygen consumption. After injection of syngeneic LLC1 tumor cells, DHX15+/- mice showed partially inhibited primary tumor growth and reduced lung metastasis. Our results revealed an important role of DHX15 in vascular physiology and pave a new way to explore its potential use as a therapeutical target for metastasis treatment.


Asunto(s)
Metabolismo Energético , Sistema Linfático/patología , Metástasis de la Neoplasia , ARN Helicasas/deficiencia , Animales , Embrión de Mamíferos/metabolismo , Embrión no Mamífero/embriología , Embrión no Mamífero/metabolismo , Endotelio/metabolismo , Ratones , Ratones Transgénicos/embriología , Neoplasias , Pez Cebra/embriología
14.
J Clin Invest ; 131(12)2021 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-34128469

RESUMEN

Although tissue uptake of fatty acids from chylomicrons is primarily via lipoprotein lipase (LpL) hydrolysis of triglycerides (TGs), studies of patients with genetic LpL deficiency suggest additional pathways deliver dietary lipids to tissues. Despite an intact endothelial cell (EC) barrier, hyperchylomicronemic patients accumulate chylomicron-derived lipids within skin macrophages, leading to the clinical finding eruptive xanthomas. We explored whether an LpL-independent pathway exists for transfer of circulating lipids across the EC barrier. We found that LpL-deficient mice had a marked increase in aortic EC lipid droplets before and after a fat gavage. Cultured ECs internalized chylomicrons, which were hydrolyzed within lysosomes. The products of this hydrolysis fueled lipid droplet biogenesis in ECs and triggered lipid accumulation in cocultured macrophages. EC chylomicron uptake was inhibited by competition with HDL and knockdown of the scavenger receptor-BI (SR-BI). In vivo, SR-BI knockdown reduced TG accumulation in aortic ECs and skin macrophages of LpL-deficient mice. Thus, ECs internalize chylomicrons, metabolize them in lysosomes, and either store or release their lipids. This latter process may allow accumulation of TGs within skin macrophages and illustrates a pathway that might be responsible for creation of eruptive xanthomas.


Asunto(s)
Aorta/metabolismo , Quilomicrones/metabolismo , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Gotas Lipídicas/metabolismo , Triglicéridos/metabolismo , Xantomatosis/metabolismo , Animales , Aorta/patología , Quilomicrones/genética , Técnicas de Cocultivo , Modelos Animales de Enfermedad , Células Endoteliales de la Vena Umbilical Humana/patología , Humanos , Gotas Lipídicas/patología , Lipoproteína Lipasa/deficiencia , Lipoproteína Lipasa/metabolismo , Macrófagos/metabolismo , Macrófagos/patología , Ratones , Triglicéridos/genética , Xantomatosis/genética , Xantomatosis/patología
15.
Circulation ; 144(10): 805-822, 2021 09 07.
Artículo en Inglés | MEDLINE | ID: mdl-34182767

RESUMEN

BACKGROUND: Activin receptor-like kinase 1 (ALK1) is an endothelial transmembrane serine threonine kinase receptor for BMP family ligands that plays a critical role in cardiovascular development and pathology. Loss-of-function mutations in the ALK1 gene cause type 2 hereditary hemorrhagic telangiectasia, a devastating disorder that leads to arteriovenous malformations. Here, we show that ALK1 controls endothelial cell polarization against the direction of blood flow and flow-induced endothelial migration from veins through capillaries into arterioles. METHODS: Using Cre lines that recombine in different subsets of arterial, capillary-venous, or endothelial tip cells, we show that capillary-venous Alk1 deletion was sufficient to induce arteriovenous malformation formation in the postnatal retina. RESULTS: ALK1 deletion impaired capillary-venous endothelial cell polarization against the direction of blood flow in vivo and in vitro. Mechanistically, ALK1-deficient cells exhibited increased integrin signaling interaction with vascular endothelial growth factor receptor 2, which enhanced downstream YAP/TAZ nuclear translocation. Pharmacologic inhibition of integrin or YAP/TAZ signaling rescued flow migration coupling and prevented vascular malformations in Alk1-deficient mice. CONCLUSIONS: Our study reveals ALK1 as an essential driver of flow-induced endothelial cell migration and identifies loss of flow-migration coupling as a driver of arteriovenous malformation formation in hereditary hemorrhagic telangiectasia disease. Integrin-YAP/TAZ signaling blockers are new potential targets to prevent vascular malformations in patients with hereditary hemorrhagic telangiectasia.


Asunto(s)
Malformaciones Arteriovenosas , Células Endoteliales , Telangiectasia Hemorrágica Hereditaria , Factor A de Crecimiento Endotelial Vascular , Animales , Humanos , Malformaciones Arteriovenosas/metabolismo , Movimiento Celular/fisiología , Células Endoteliales/metabolismo , Telangiectasia Hemorrágica Hereditaria/mortalidad , Factor A de Crecimiento Endotelial Vascular/metabolismo , Receptor 2 de Factores de Crecimiento Endotelial Vascular/metabolismo , Malformaciones Vasculares/metabolismo , Ratones
16.
Transl Vis Sci Technol ; 10(6): 21, 2021 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-34111267

RESUMEN

Purpose: Caveolin (Cav) regulates various aspect of endothelial cell signaling and cell-permeable peptides (CPPs) fused to domains of Cav can reduce retinal damage and inflammation in vivo. Thus, the goal of the present study was to identify a novel CPP that improves delivery of a truncated Cav modulator in vitro and in vivo. Methods: Phage display technology was used to identify a small peptide (RRPPR) that was internalized into endothelial cells. Fusions of Cav with the peptide were compared to existing molecules in three distinct assays, vascular endothelial growth factor-A (VEGF) induced nitric oxide (NO) release, VEGF induced vascular leakage, and in a model of immune mediated uveitis. Results: RRPPR was internalized efficiently and was potent in blocking NO release. Fusing RRPPR with a minimal Cav inhibitory domain (CVX51401) dose-dependently blocked NO release, VEGF induced permeability, and retinal damage in a model of uveitis. Conclusions: CVX51401 is a novel Cav modulator that reduces VEGF and immune mediated inflammation. Translational Relevance: CVX51401 is an optimized Cav modulator that reduces vascular permeability and ocular inflammation that is poised for clinical development.


Asunto(s)
Permeabilidad Capilar , Factor A de Crecimiento Endotelial Vascular , Caveolina 1/genética , Células Endoteliales/metabolismo , Humanos , Inflamación/tratamiento farmacológico , Factor A de Crecimiento Endotelial Vascular/metabolismo
17.
Elife ; 102021 04 28.
Artículo en Inglés | MEDLINE | ID: mdl-33908348

RESUMEN

Background: Hypoxia and consequent production of vascular endothelial growth factor A (VEGFA) promote blood vessel leakiness and edema in ocular diseases. Anti-VEGFA therapeutics may aggravate hypoxia; therefore, therapy development is needed. Methods: Oxygen-induced retinopathy was used as a model to test the role of nitric oxide (NO) in pathological neovascularization and vessel permeability. Suppression of NO formation was achieved chemically using L-NMMA, or genetically, in endothelial NO synthase serine to alanine (S1176A) mutant mice. Results: Suppression of NO formation resulted in reduced retinal neoangiogenesis. Remaining vascular tufts exhibited reduced vascular leakage through stabilized endothelial adherens junctions, manifested as reduced phosphorylation of vascular endothelial (VE)-cadherin Y685 in a c-Src-dependent manner. Treatment with a single dose of L-NMMA in established retinopathy restored the vascular barrier and prevented leakage. Conclusions: We conclude that NO destabilizes adheren junctions, resulting in vascular hyperpermeability, by converging with the VEGFA/VEGFR2/c-Src/VE-cadherin pathway. Funding: This study was supported by the Swedish Cancer foundation (19 0119 Pj ), the Swedish Research Council (2020-01349), the Knut and Alice Wallenberg foundation (KAW 2020.0057) and a Fondation Leducq Transatlantic Network of Excellence Grant in Neurovascular Disease (17 CVD 03). KAW also supported LCW with a Wallenberg Scholar grant (2015.0275). WCS was supported by Grants R35 HL139945, P01 HL1070205, AHA MERIT Award. DV was supported by grants from the Deutsche Forschungsgemeinschaft, SFB1450, B03, and CRU342, P2.


Asunto(s)
Antígenos CD/química , Antígenos CD/metabolismo , Proteína Tirosina Quinasa CSK/metabolismo , Cadherinas/química , Cadherinas/metabolismo , Óxido Nítrico Sintasa de Tipo III/metabolismo , Enfermedades de la Retina/enzimología , Tirosina/metabolismo , Uniones Adherentes/genética , Uniones Adherentes/metabolismo , Secuencias de Aminoácidos , Animales , Antígenos CD/genética , Proteína Tirosina Quinasa CSK/genética , Cadherinas/genética , Permeabilidad Capilar , Células Endoteliales/enzimología , Células Endoteliales/metabolismo , Endotelio Vascular/enzimología , Endotelio Vascular/metabolismo , Humanos , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Neovascularización Patológica , Óxido Nítrico/metabolismo , Óxido Nítrico Sintasa de Tipo III/genética , Fosforilación , Enfermedades de la Retina/genética , Enfermedades de la Retina/metabolismo , Factor A de Crecimiento Endotelial Vascular/genética , Factor A de Crecimiento Endotelial Vascular/metabolismo
18.
Am J Hum Genet ; 108(4): 722-738, 2021 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-33798445

RESUMEN

Progressive myoclonus epilepsies (PMEs) comprise a group of clinically and genetically heterogeneous rare diseases. Over 70% of PME cases can now be molecularly solved. Known PME genes encode a variety of proteins, many involved in lysosomal and endosomal function. We performed whole-exome sequencing (WES) in 84 (78 unrelated) unsolved PME-affected individuals, with or without additional family members, to discover novel causes. We identified likely disease-causing variants in 24 out of 78 (31%) unrelated individuals, despite previous genetic analyses. The diagnostic yield was significantly higher for individuals studied as trios or families (14/28) versus singletons (10/50) (OR = 3.9, p value = 0.01, Fisher's exact test). The 24 likely solved cases of PME involved 18 genes. First, we found and functionally validated five heterozygous variants in NUS1 and DHDDS and a homozygous variant in ALG10, with no previous disease associations. All three genes are involved in dolichol-dependent protein glycosylation, a pathway not previously implicated in PME. Second, we independently validate SEMA6B as a dominant PME gene in two unrelated individuals. Third, in five families, we identified variants in established PME genes; three with intronic or copy-number changes (CLN6, GBA, NEU1) and two very rare causes (ASAH1, CERS1). Fourth, we found a group of genes usually associated with developmental and epileptic encephalopathies, but here, remarkably, presenting as PME, with or without prior developmental delay. Our systematic analysis of these cases suggests that the small residuum of unsolved cases will most likely be a collection of very rare, genetically heterogeneous etiologies.


Asunto(s)
Dolicoles/metabolismo , Mutación/genética , Epilepsias Mioclónicas Progresivas/genética , Adolescente , Adulto , Edad de Inicio , Niño , Preescolar , Estudios de Cohortes , Variaciones en el Número de Copia de ADN/genética , Femenino , Glicosilación , Humanos , Intrones/genética , Masculino , Persona de Mediana Edad , Epilepsias Mioclónicas Progresivas/clasificación , Secuenciación del Exoma , Adulto Joven
19.
Sci Transl Med ; 13(591)2021 04 28.
Artículo en Inglés | MEDLINE | ID: mdl-33910977

RESUMEN

Acute lung injury (ALI) causes high mortality and lacks any pharmacological intervention. Here, we found that pazopanib ameliorated ALI manifestations and reduced mortality in mouse ALI models and reduced edema in human lung transplantation recipients. Pazopanib inhibits mitogen-activated protein kinase kinase kinase 2 (MAP3K2)- and MAP3K3-mediated phosphorylation of NADPH oxidase 2 subunit p47phox at Ser208 to increase reactive oxygen species (ROS) formation in myeloid cells. Genetic inactivation of MAP3K2 and MAP3K3 in myeloid cells or hematopoietic mutation of p47phox Ser208 to alanine attenuated ALI manifestations and abrogates anti-ALI effects of pazopanib. This myeloid MAP3K2/MAP3K3-p47phox pathway acted via paracrine H2O2 to enhance pulmonary vasculature integrity and promote lung epithelial cell survival and proliferation, leading to increased pulmonary barrier function and resistance to ALI. Thus, pazopanib has the potential to be effective for treating ALI.


Asunto(s)
Lesión Pulmonar Aguda , Indazoles/farmacología , MAP Quinasa Quinasa Quinasa 2/antagonistas & inhibidores , MAP Quinasa Quinasa Quinasa 3/antagonistas & inhibidores , Pirimidinas/farmacología , Sulfonamidas/farmacología , Lesión Pulmonar Aguda/tratamiento farmacológico , Animales , Humanos , Peróxido de Hidrógeno , Ratones , NADPH Oxidasas/metabolismo , Fosforilación , Especies Reactivas de Oxígeno
20.
J Hepatol ; 75(2): 377-386, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33675874

RESUMEN

BACKGROUND & AIMS: Liver sinusoidal endothelial cell (LSEC) dysfunction has been reported in alcohol-related liver disease, yet it is not known whether LSECs metabolize alcohol. Thus, we investigated this, as well as the mechanisms of alcohol-induced LSEC dysfunction and a potential therapeutic approach for alcohol-induced liver injury. METHODS: Primary human, rat and mouse LSECs were used. Histone deacetylase 6 (HDAC6) was overexpressed specifically in liver ECs via adeno-associated virus (AAV)-mediated gene delivery to decrease heat shock protein 90 (Hsp90) acetylation in ethanol-fed mice. RESULTS: LSECs expressed CYP2E1 and alcohol dehydrogenase 1 (ADH1) and metabolized alcohol. Ethanol induced CYP2E1 in LSECs, but not ADH1. Alcohol metabolism by CYP2E1 increased Hsp90 acetylation and decreased its interaction with endothelial nitric oxide synthase (eNOS) leading to a decrease in nitric oxide (NO) production. A non-acetylation mutant of Hsp90 increased its interaction with eNOS and NO production, whereas a hyperacetylation mutant decreased NO production. These results indicate that Hsp90 acetylation is responsible for decreases in its interaction with eNOS and eNOS-derived NO production. AAV8-driven HDAC6 overexpression specifically in liver ECs deacetylated Hsp90, restored Hsp90's interaction with eNOS and ameliorated alcohol-induced liver injury in mice. CONCLUSION: Restoring LSEC function is important for ameliorating alcohol-induced liver injury. To this end, blocking acetylation of Hsp90 specifically in LSECs via AAV-mediated gene delivery has the potential to be a new therapeutic strategy. LAY SUMMARY: Alcohol metabolism in liver sinusoidal endothelial cells (LSECs) and the mechanism of alcohol-induced LSEC dysfunction are largely unknown. Herein, we demonstrate that LSECs can metabolize alcohol. We also uncover a mechanism by which alcohol induces LSEC dysfunction and liver injury, and we identify a potential therapeutic strategy to prevent this.


Asunto(s)
Acetilación/efectos de los fármacos , Hepatopatías Alcohólicas/genética , Adulto , Consumo de Bebidas Alcohólicas/efectos adversos , Consumo de Bebidas Alcohólicas/fisiopatología , Análisis de Varianza , Animales , Células Endoteliales/efectos de los fármacos , Células Endoteliales/enzimología , Proteínas HSP90 de Choque Térmico , Humanos , Hepatopatías Alcohólicas/etiología , Ratones , Ratas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...