Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
ChemMedChem ; 16(5): 767-776, 2021 03 03.
Artículo en Inglés | MEDLINE | ID: mdl-33210441

RESUMEN

Inflammatory processes occur as a generic response of the immune system and can be triggered by various factors, such as infection with pathogenic microorganisms or damaged tissue. Due to the complexity of the inflammation process and its role in common diseases like asthma, cancer, skin disorders or Alzheimer's disease, anti-inflammatory drugs are of high pharmaceutical interest. Nature is a rich source for compounds with anti-inflammatory properties. Several studies have focused on the structural optimization of natural products to improve their pharmacological properties. As derivatization through total synthesis is often laborious with low yields and limited stereoselectivity, the use of biosynthetic, enzyme-driven reactions is an attractive alternative for synthesizing and modifying complex bioactive molecules. In this minireview, we present an outline of the biotechnological methods used to derivatize anti-inflammatory natural products, including precursor-directed biosynthesis, mutasynthesis, combinatorial biosynthesis, as well as whole-cell and in vitro biotransformation.


Asunto(s)
Antiinflamatorios/uso terapéutico , Bioingeniería , Productos Biológicos/uso terapéutico , Inflamación/tratamiento farmacológico , Antiinflamatorios/química , Productos Biológicos/química , Biotransformación , Humanos , Inflamación/inmunología , Conformación Molecular
2.
Chembiochem ; 21(16): 2268-2273, 2020 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-32216075

RESUMEN

Enzyme promiscuity has important implications in the field of biocatalysis. In some cases, structural analogues of simple metabolic building blocks can be processed through entire pathways to give natural product derivatives that are not readily accessible by chemical means. In this study, we explored the plasticity of the aurachin biosynthesis pathway with regard to using fluoro- and chloroanthranilic acids, which are not abundant in the bacterial producers of these quinolone antibiotics. The incorporation rates of the tested precursor molecules disclosed a regiopreference for halogen substitution as well as steric limitations of enzymatic substrate tolerance. Three previously undescribed fluorinated aurachin derivatives were produced in preparative amounts by fermentation and structurally characterized. Furthermore, their antibacterial activities were evaluated in comparison to their natural congener aurachin D.


Asunto(s)
Antibacterianos/biosíntesis , Antibacterianos/química , Halogenación , Quinolonas/química , Quinolonas/metabolismo , Stigmatella aurantiaca/metabolismo
3.
J Nat Prod ; 82(9): 2544-2549, 2019 09 27.
Artículo en Inglés | MEDLINE | ID: mdl-31465225

RESUMEN

Precursor-directed biosynthesis was used to introduce selected aryl carboxylic acids into the pseudochelin pathway, which had recently been assembled in Myxococcus xanthus. Overall, 14 previously undescribed analogues of the natural products myxochelin B and pseudochelin A were generated and structurally characterized. A subset of 10 derivatives together with their parental molecules were evaluated for their activity toward human 5-lipoxygenase. This testing revealed pseudochelin A as the most potent 5-lipoxygenase inhibitor among the naturally occurring compounds, whereas myxochelin A is the least active. Replacement of the catechol moieties in myxochelin B and pseudochelin A affected the bioactivity to different degrees.


Asunto(s)
Proteínas Bacterianas/farmacología , Catecoles/farmacología , Ingeniería Genética , Inhibidores de la Lipooxigenasa/farmacología , Lisina/análogos & derivados , Myxococcus xanthus/química , Humanos , Inhibidores de la Lipooxigenasa/aislamiento & purificación , Lisina/farmacología , Myxococcus xanthus/genética
4.
Appl Environ Microbiol ; 84(22)2018 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-30217842

RESUMEN

Myxobacteria utilize the catechol natural products myxochelin A and B in order to maintain their iron homeostasis. Recently, the production of these siderophores, along with a new myxochelin derivative named pseudochelin A, was reported for the marine bacterium Pseudoalteromonas piscicida S2040. The latter derivative features a characteristic imidazoline moiety, which was proposed to originate from an intramolecular condensation reaction of the ß-aminoethyl amide group in myxochelin B. To identify the enzyme catalyzing this conversion, we compared the myxochelin regulons of two myxobacterial strains that produce solely myxochelin A and B with those of P. piscicida S2040. This approach revealed a gene exclusive to the myxochelin regulon in P. piscicida S2040, coding for an enzyme of the amidohydrolase superfamily. To prove that this enzyme is indeed responsible for the postulated conversion, the reaction was reconstituted in vitro using a hexahistidine-tagged recombinant protein made in Escherichia coli, with myxochelin B as the substrate. To test the production of pseudochelin A under in vivo conditions, the amidohydrolase gene was cloned into the myxobacterial plasmid pZJY156 and placed under the control of a copper-inducible promoter. The resulting vector was introduced into the myxobacterium Myxococcus xanthus DSM 16526, a native producer of myxochelin A and B. Following induction with copper, the myxobacterial expression strain was found to synthesize small quantities of pseudochelin A. Replacement of the copper-inducible promoter with the constitutive pilA promoter led to increased production levels in M. xanthus, which facilitated the isolation and subsequent structural verification of the heterologously produced compound.IMPORTANCE In this study, an enzyme for imidazoline formation in pseudochelin biosynthesis was identified. Evidence for the involvement of this enzyme in the postulated reaction was obtained after in vitro reconstitution. Furthermore, the function of this enzyme was demonstrated in vivo by transferring the corresponding gene into the bacterium Myxococcus xanthus, which thereby became a producer of pseudochelin A. In addition to clarifying the molecular basis of imidazoline formation in siderophore biosynthesis, we describe the heterologous expression of a gene in a myxobacterium without chromosomal integration. Due to its metabolic proficiency, M. xanthus represents an interesting alternative to established host systems for the reconstitution and manipulation of biosynthetic pathways. Since the plasmid used in this study is easily adaptable for the expression of other enzymes as well, we expand the conventional expression strategy for myxobacteria, which is based on the integration of biosynthetic genes into the host genome.


Asunto(s)
Lisina/análogos & derivados , Myxococcus xanthus/metabolismo , Amidohidrolasas/genética , Amidohidrolasas/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Vías Biosintéticas , Catecoles/química , Catecoles/metabolismo , Regulación Bacteriana de la Expresión Génica , Ingeniería Genética , Lisina/biosíntesis , Lisina/química , Myxococcus xanthus/genética , Plásmidos/genética , Plásmidos/metabolismo , Regiones Promotoras Genéticas , Regulón
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...