Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
PLoS One ; 13(4): e0195034, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29668710

RESUMEN

Previous molecular phylogenetic analyses have resolved the Australian bloodwood eucalypt genus Corymbia (~100 species) as either monophyletic or paraphyletic with respect to Angophora (9-10 species). Here we assess relationships of Corymbia and Angophora using a large dataset of chloroplast DNA sequences (121,016 base pairs; from 90 accessions representing 55 Corymbia and 8 Angophora species, plus 33 accessions of related genera), skimmed from high throughput sequencing of genomic DNA, and compare results with new analyses of nuclear ITS sequences (119 accessions) from previous studies. Maximum likelihood and maximum parsimony analyses of cpDNA resolve well supported trees with most nodes having >95% bootstrap support. These trees strongly reject monophyly of Corymbia, its two subgenera (Corymbia and Blakella), most taxonomic sections (Abbreviatae, Maculatae, Naviculares, Septentrionales), and several species. ITS trees weakly indicate paraphyly of Corymbia (bootstrap support <50% for maximum likelihood, and 71% for parsimony), but are highly incongruent with the cpDNA analyses, in that they support monophyly of both subgenera and some taxonomic sections of Corymbia. The striking incongruence between cpDNA trees and both morphological taxonomy and ITS trees is attributed largely to chloroplast introgression between taxa, because of geographic sharing of chloroplast clades across taxonomic groups. Such introgression has been widely inferred in studies of the related genus Eucalyptus. This is the first report of its likely prevalence in Corymbia and Angophora, but this is consistent with previous morphological inferences of hybridisation between species. Our findings (based on continent-wide sampling) highlight a need for more focussed studies to assess the extent of hybridisation and introgression in the evolutionary history of these genera, and that critical testing of the classification of Corymbia and Angophora requires additional sequence data from nuclear genomes.


Asunto(s)
ADN de Cloroplastos/genética , Variación Genética , Myrtaceae/clasificación , Myrtaceae/genética , Australia , ADN Ribosómico/genética , Filogenia , Filogeografía , Hojas de la Planta/genética , Análisis de Secuencia de ADN
2.
PLoS One ; 11(3): e0149531, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26938104

RESUMEN

Patterns of geographic distribution and composition of fungal communities are still poorly understood. Widespread occurrence in terrestrial ecosystems and the unique richness of interactions of Sebacinales with plants make them a target group to study evolutionary events in the light of nutritional lifestyle. We inferred diversity patterns, phylogenetic structures and divergence times of Sebacinales with respect to their nutritional lifestyles by integrating data from fossil-calibrated phylogenetic analyses. Relaxed molecular clock analyses indicated that Sebacinales originated late Permian within Basidiomycota, and their split into Sebacinaceae and Serendipitaceae nom. prov. likely occurred during the late Jurassic and the early Cretaceous, coinciding with major diversifications of land plants. In Sebacinaceae, diversification of species with ectomycorrhizal lifestyle presumably started during the Paleocene. Lineage radiations of the core group of ericoid and cavendishioid mycorrhizal Sebacinales started probably in the Eocene, coinciding with diversification events of their hosts. The diversification of Sebacinales with jungermannioid interactions started during the Oligocene, and occurred much later than the diversification of their hosts. Sebacinales communities associated either with ectomycorrhizal plants, achlorophyllous orchids, ericoid and cavendishioid Ericaceae or liverworts were phylogenetically clustered and globally distributed. Major Sebacinales lineage diversifications started after the continents had drifted apart. We also briefly discuss dispersal patterns of extant Sebacinales.


Asunto(s)
Basidiomycota/genética , Evolución Biológica , Fósiles/microbiología , Filogenia , Basidiomycota/clasificación , Basidiomycota/metabolismo , Ecosistema , Raíces de Plantas/microbiología , Plantas/microbiología
3.
PLoS One ; 8(4): e61261, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23585884

RESUMEN

The buckwheat family Polygonaceae is a diverse group of plants and is a good model for investigating biogeography, breeding systems, coevolution with symbionts such as ants and fungi, functional trait evolution, hybridization, invasiveness, morphological plasticity, pollen morphology and wood anatomy. The main goal of this study was to obtain age estimates for Polygonaceae by calibrating a Bayesian phylogenetic analysis, using a relaxed molecular clock with fossil data. Based on the age estimates, we also develop hypotheses about the historical biogeography of the Southern Hemisphere group Muehlenbeckia. We are interested in addressing whether vicariance or dispersal could account for the diversification of Muehlenbeckia, which has a "Gondwanan" distribution. Eighty-one species of Polygonaceae were analysed with MrBayes to infer species relationships. One nuclear (nrITS) and three chloroplast markers (the trnL-trnF spacer region, matK and ndhF genes) were used. The molecular data were also analysed with Beast to estimate divergence times. Seven calibration points including fossil pollen and a leaf fossil of Muehlenbeckia were used to infer node ages. Results of the Beast analyses indicate an age of 110.9 (exponential/lognormal priors)/118.7 (uniform priors) million years (Myr) with an uncertainty interval of (90.7-125.0) Myr for the stem age of Polygonaceae. This age is older than previously thought (Maastrichtian, approximately 65.5-70.6 Myr). The estimated divergence time for Muehlenbeckia is 41.0/41.6 (39.6-47.8) Myr and its crown clade is 20.5/22.3 (14.2-33.5) Myr old. Because the breakup of Gondwana occurred from 95-30 Myr ago, diversification of Muehlenbeckia is best explained by oceanic long-distance and maybe stepping-stone dispersal rather than vicariance. This study is the first to give age estimates for clades of Polygonaceae and functions as a jumping-off point for future studies on the historical biogeography of the family.


Asunto(s)
Evolución Molecular , Fósiles , Polygonaceae/genética , Teorema de Bayes , Cloroplastos/genética , Genes de Plantas , Filogenia , Polygonaceae/clasificación
4.
PLoS Curr ; 3: RRN1227, 2011 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-21479257

RESUMEN

Neotropical Vaccinioideae (Ericaceae) are evolutionarily rather young and presumably of Northern Hemisphere origin. Vaccinioideae are highly dependent on their mycorrhizal symbionts and Sebacinales (basidiomycetes) were previously found to be the dominant mycobionts of Andean Clade Vaccinioideae (Neotropical Vaccinieae). We were interested to see whether the North American Vaccinioideae reached the Neotropics with their mycobionts or whether they acquired new, local Sebacinales.We investigated Sebacinales of 58 individuals of Vaccinioideae from Ecuador, Panama and North America to examine whether mycobionts of each region are distantly or closely related.We isolated the ITS of the ribosomal nuclear DNA in order to infer a molecular phylogeny of Sebacinales and to determine Molecular Operational Taxonomic Units (MOTUs). MOTU delimitation was based on a 3% threshold of ITS variability and conducted with complete linkage clustering. The analyses revealed that most Sebacinales from Ecuador, Panama and North America are closely related and that two MOTUs out of 33 have a distribution ranging from the Neotropics to the Pacific Northwest of North America. The data suggest that Neotropical and temperate Vaccinioideae of North America share their Sebacinales communities and that plants and fungi migrated together.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...