Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 82
Filtrar
1.
J Med Virol ; 95(11): e29182, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37909805

RESUMEN

INTRODUCTION: Human adenovirus 7 (HAdV-7) is an important viral pathogen of severe pneumonia in children and a serious threat to health. METHODS: A cohort of 45 pediatric patients diagnosed with HAdV-7-associated severe pneumonia and admitted to the Pediatric Intensive Care Unit at the Children's Hospital of Chongqing Medical University from May 2018 to January 2020 were included. Risk factors of death were analyzed by the Cox proportional risk mode with Clinical data, serum, and nasopharyngeal aspirate adenovirus load, Genome analysis, Olink proteomics, and cytokine profile between dead and surviving patients were also analyzed. RESULTS: A total of 45 children with a median age of 12.0 months (interquartile range [IQR]: 6.5, 22.0) were included (female 14), including 14 (31.1%) who died. High serum viral load was an independent risk factor for mortality (hazard ratio [HR] = 2.16, 95% confidence interval [CI], 1.04-4.49, p = 0.039). BTB and CNC homology 1 (BACH1), interleukin-5 (IL-5), and IL-9 levels were significantly correlated with serum viral load (p = 0.0400, 0.0499, and 0.0290; r = 0.4663, 0.3339, and -0.3700, respectively), with significant differences between the dead and survival groups (p = 0.021, 0.001, and 0.021). CONCLUSIONS: Severe cytokine storm-associated high serum viral load after HAdV-7 infection may be the main mechanism responsible for poor prognosis in children.


Asunto(s)
Infecciones por Adenovirus Humanos , Adenovirus Humanos , Infecciones Comunitarias Adquiridas , Neumonía Viral , Neumonía , Niño , Humanos , Femenino , Lactante , Adenovirus Humanos/genética , Proteómica , Factores de Riesgo
2.
J Virol ; 97(10): e0101423, 2023 10 31.
Artículo en Inglés | MEDLINE | ID: mdl-37712705

RESUMEN

IMPORTANCE: Adenoviruses are widely used in gene therapy and vaccine delivery. Due to the high prevalence of human adenoviruses (HAdVs), the pre-existing immunity against HAdVs in humans is common, which limits the wide and repetitive use of HAdV vectors. In contrast, the pre-existing immunity against simian adenoviruses (SAdVs) is low in humans. Therefore, we performed epidemiological investigations of SAdVs in simians and found that the SAdV prevalence was as high as 33.9%. The whole-genome sequencing and sequence analysis showed SAdV diversity and possible cross species transmission. One isolate with low level of pre-existing neutralizing antibodies in humans was used to construct replication-deficient SAdV vectors with E4orf6 substitution and E1/E3 deletion. Interestingly, we found that the E3 region plays a critical role in its replication in human cells, but the absence of this region could be compensated for by the E4orf6 from HAdV-5 and the E1 expression intrinsic to HEK293 cells.


Asunto(s)
Adenovirus de los Simios , Terapia Genética , Vectores Genéticos , Vacunas , Animales , Humanos , Adenovirus Humanos/genética , Adenovirus de los Simios/genética , Vectores Genéticos/genética , Células HEK293 , Macaca/genética
3.
J Virol ; 97(5): e0020923, 2023 05 31.
Artículo en Inglés | MEDLINE | ID: mdl-37120831

RESUMEN

Human adenoviruses type 3 (HAdV-3) and type 55 (HAdV-55) are frequently encountered, highly contagious respiratory pathogens with high morbidity rate. In contrast to HAdV-3, one of the most predominant types in children, HAdV-55 is a reemergent pathogen associated with more severe community-acquired pneumonia (CAP) in adults, especially in military camps. However, the infectivity and pathogenicity differences between these viruses remain unknown as in vivo models are not available. Here, we report a novel system utilizing human embryonic stem cells-derived 3-dimensional airway organoids (hAWOs) and alveolar organoids (hALOs) to investigate these two viruses. Firstly, HAdV-55 replicated more robustly than HAdV-3. Secondly, cell tropism analysis in hAWOs and hALOs by immunofluorescence staining revealed that HAdV-55 infected more airway and alveolar stem cells (basal and AT2 cells) than HAdV-3, which may lead to impairment of self-renewal functions post-injury and the loss of cell differentiation in lungs. Additionally, the viral life cycles of HAdV-3 and -55 in organoids were also observed using Transmission Electron Microscopy. This study presents a useful pair of lung organoids for modeling infection and replication differences between respiratory pathogens, illustrating that HAdV-55 has relatively higher replication efficiency and more specific cell tropism in human lung organoids than HAdV-3, which may result in relatively higher pathogenicity and virulence of HAdV-55 in human lungs. The model system is also suitable for evaluating potential antiviral drugs, as demonstrated with cidofovir. IMPORTANCE Human adenovirus (HAdV) infections are a major threat worldwide. HAdV-3 is one of the most predominant respiratory pathogen types found in children. Many clinical studies have reported that HAdV-3 causes less severe disease. In contrast, HAdV-55, a reemergent acute respiratory disease pathogen, is associated with severe community-acquired pneumonia in adults. Currently, no ideal in vivo models are available for studying HAdVs. Therefore, the mechanism of infectivity and pathogenicity differences between human adenoviruses remain unknown. In this study, a useful pair of 3-dimensional (3D) airway organoids (hAWOs) and alveolar organoids (hALOs) were developed to serve as a model. The life cycles of HAdV-3 and HAdV-55 in these human lung organoids were documented for the first time. These 3D organoids harbor different cell types, which are similar to the ones found in humans. This allows for the study of the natural target cells for infection. The finding of differences in replication efficiency and cell tropism between HAdV-55 and -3 may provide insights into the mechanism of clinical pathogenicity differences between these two important HAdV types. Additionally, this study provides a viable and effective in vitro tool for evaluating potential anti-adenoviral treatments.


Asunto(s)
Infecciones por Adenovirus Humanos , Adenovirus Humanos , Antivirales , Células Madre Embrionarias Humanas , Adulto , Niño , Humanos , Infecciones por Adenovirus Humanos/tratamiento farmacológico , Infecciones por Adenovirus Humanos/virología , Adenovirus Humanos/clasificación , Adenovirus Humanos/fisiología , Antivirales/farmacología , Pulmón/virología , Organoides , Neumonía , Especificidad de la Especie
4.
Viruses ; 14(11)2022 11 16.
Artículo en Inglés | MEDLINE | ID: mdl-36423143

RESUMEN

The determination of core genes in viral and bacterial genomes is crucial for a better understanding of their relatedness and for their classification. CoreGenes5.0 is an updated user-friendly web-based software tool for the identification of core genes in and data mining of viral and bacterial genomes. This tool has been useful in the resolution of several issues arising in the taxonomic analysis of bacteriophages and has incorporated many suggestions from researchers in that community. The webserver displays result in a format that is easy to understand and allows for automated batch processing, without the need for any user-installed bioinformatics software. CoreGenes5.0 uses group protein clustering of genomes with one of three algorithm options to output a table of core genes from the input genomes. Previously annotated "unknown genes" may be identified with homologues in the output. The updated version of CoreGenes is able to handle more genomes, is faster, and is more robust, providing easier analysis of custom or proprietary datasets. CoreGenes5.0 is accessible at coregenes.org, migrating from a previous site.


Asunto(s)
Genoma Bacteriano , Programas Informáticos , Biología Computacional , Algoritmos , Minería de Datos
5.
Front Microbiol ; 13: 911694, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35633710

RESUMEN

Human adenoviruses (HAdVs) within species B, C, and E are responsible for highly contagious and potentially severe respiratory disease infections. The traditional method to type these pathogens was based on virus neutralization and hemagglutination assays, which are both time-consuming and difficult, particularly due to the nonavailability of reagents. Subsequent molecular typing based on the partial characterization of the hexon gene and/or the restriction enzyme analysis (REA) of the genomes is inadequate, particularly in identifying recombinants. Here, a rapid, simple, and cost-effective method for molecular typing HAdV respiratory pathogens is presented. This incorporates three pairs of universal PCR primers that target the variable regions of the three major capsid genes, i.e., hexon, penton base, and fiber genes, that span the genome. The protocol enables typing and characterization of genotypes within species B, C, and E, as well as of some genotypes within species D and F. To validate this method, we surveyed 100 children with HAdV-associated acute respiratory infections identified by direct immunofluorescence (Hong Kong; July through October, 2014). Throat swab specimens were collected and analyzed by PCR amplification and sequencing; these sequences were characterized by BLAST. HAdVs were detected in 98 out of 100 (98%) samples, distributing as follows: 74 HAdV-B3 (74%); 10 HAdV-E4 (10%); 7 HAdV-C2 (7%); 2 HAdV-C6 (2%); 1 HAdV-B7 (1%); 1 HAdV-C1 (1%); 2 co-infection (2%); and 1 novel recombinant (1%). This study is the first detailed molecular epidemiological survey of HAdVs in Hong Kong. The developed method allows for the rapid identification of HAdV respiratory pathogens, including recombinants, and bypasses the need for whole genome sequencing for real-time surveillance of circulating adenovirus strains in outbreaks and populations by clinical virologists, public health officials, and epidemiologists.

6.
Signal Transduct Target Ther ; 7(1): 138, 2022 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-35474215

RESUMEN

The current pandemic of COVID-19 is fueled by more infectious emergent Omicron variants. Ongoing concerns of emergent variants include possible recombinants, as genome recombination is an important evolutionary mechanism for the emergence and re-emergence of human viral pathogens. In this study, we identified diverse recombination events between two Omicron major subvariants (BA.1 and BA.2) and other variants of concern (VOCs) and variants of interest (VOIs), suggesting that co-infection and subsequent genome recombination play important roles in the ongoing evolution of SARS-CoV-2. Through scanning high-quality completed Omicron spike gene sequences, 18 core mutations of BA.1 (frequency >99%) and 27 core mutations of BA.2 (nine more than BA.1) were identified, of which 15 are specific to Omicron. BA.1 subvariants share nine common amino acid mutations (three more than BA.2) in the spike protein with most VOCs, suggesting a possible recombination origin of Omicron from these VOCs. There are three more Alpha-related mutations in BA.1 than BA.2, and BA.1 is phylogenetically closer to Alpha than other variants. Revertant mutations are found in some dominant mutations (frequency >95%) in the BA.1. Most notably, multiple characteristic amino acid mutations in the Delta spike protein have been also identified in the "Deltacron"-like Omicron Variants isolated since November 11, 2021 in South Africa, which implies the recombination events occurring between the Omicron and Delta variants. Monitoring the evolving SARS-CoV-2 genomes especially for recombination is critically important for recognition of abrupt changes to viral attributes including its epitopes which may call for vaccine modifications.


Asunto(s)
COVID-19 , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus , Aminoácidos , COVID-19/virología , Genoma Viral/genética , Humanos , Mutación/genética , Recombinación Genética/genética , SARS-CoV-2/genética , Glicoproteína de la Espiga del Coronavirus/genética
7.
J Virol ; 95(16): e0061721, 2021 07 26.
Artículo en Inglés | MEDLINE | ID: mdl-34105996

RESUMEN

The current pandemic of COVID-19 is caused by a novel coronavirus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The SARS-CoV-2 spike protein receptor-binding domain (RBD) is the critical determinant of viral tropism and infectivity. To investigate whether naturally occurring RBD mutations during the early transmission phase have altered the receptor binding affinity and infectivity, we first analyzed in silico the binding dynamics between SARS-CoV-2 RBD mutants and the human angiotensin-converting enzyme 2 (ACE2) receptor. Among 32,123 genomes of SARS-CoV-2 isolates (December 2019 through March 2020), 302 nonsynonymous RBD mutants were identified and clustered into 96 mutant types. The six dominant mutations were analyzed applying molecular dynamics simulations (MDS). The mutant type V367F continuously circulating worldwide displayed higher binding affinity to human ACE2 due to the enhanced structural stabilization of the RBD beta-sheet scaffold. The MDS also indicated that it would be difficult for bat SARS-like CoV to infect humans. However, the pangolin CoV is potentially infectious to humans. The increased infectivity of V367 mutants was further validated by performing receptor-ligand binding enzyme-linked immunosorbent assay (ELISA), surface plasmon resonance, and pseudotyped virus assays. Phylogenetic analysis of the genomes of V367F mutants showed that during the early transmission phase, most V367F mutants clustered more closely with the SARS-CoV-2 prototype strain than the dual-mutation variants (V367F+D614G), which may derivate from recombination. The analysis of critical RBD mutations provides further insights into the evolutionary trajectory of early SARS-CoV-2 variants of zoonotic origin under negative selection pressure and supports the continuing surveillance of spike mutations to aid in the development of new COVID-19 drugs and vaccines. IMPORTANCE A novel coronavirus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has caused the pandemic of COVID-19. The origin of SARS-CoV-2 was associated with zoonotic infections. The spike protein receptor-binding domain (RBD) is identified as the critical determinant of viral tropism and infectivity. Thus, whether mutations in the RBD of the circulating SARS-CoV-2 isolates have altered the receptor binding affinity and made them more infectious has been the research hot spot. Given that SARS-CoV-2 is a novel coronavirus, the significance of our research is in identifying and validating the RBD mutant types emerging during the early transmission phase and increasing human angiotensin-converting enzyme 2 (ACE2) receptor binding affinity and infectivity. Our study provides insights into the evolutionary trajectory of early SARS-CoV-2 variants of zoonotic origin. The continuing surveillance of RBD mutations with increased human ACE2 affinity in human or other animals is critical to the development of new COVID-19 drugs and vaccines against these variants during the sustained COVID-19 pandemic.


Asunto(s)
Sustitución de Aminoácidos , Enzima Convertidora de Angiotensina 2/genética , COVID-19/transmisión , Mutación , SARS-CoV-2/genética , Glicoproteína de la Espiga del Coronavirus/genética , Enzima Convertidora de Angiotensina 2/química , Enzima Convertidora de Angiotensina 2/metabolismo , Sitios de Unión , COVID-19/patología , COVID-19/virología , Expresión Génica , Interacciones Huésped-Patógeno/genética , Humanos , Cinética , Simulación de Dinámica Molecular , Fenilalanina/química , Fenilalanina/metabolismo , Filogenia , Unión Proteica , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Dominios y Motivos de Interacción de Proteínas , SARS-CoV-2/clasificación , SARS-CoV-2/metabolismo , SARS-CoV-2/patogenicidad , Glicoproteína de la Espiga del Coronavirus/química , Glicoproteína de la Espiga del Coronavirus/metabolismo , Termodinámica , Valina/química , Valina/metabolismo , Virulencia , Acoplamiento Viral
8.
Virus Evol ; 7(1): veab018, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33732504

RESUMEN

In 2017, a survey of the molecular epidemiology of human adenovirus (HAdV) infections in Southern China based on hexon and fiber genotype demonstrated that the most prevalent genotypes of HAdV were HAdV-3 (n = 62), HAdV-2 (n = 21), and HAdV-7 (n = 16). In addition, two patients were co-infected with two genotypes of HAdV. Interestingly, a novel human adenovirus C recombinant genotype strain was isolated from one of the pneumonia patients in this survey. Phylogenetic, recombination, and proteotyping analysis showed that this novel pathogen originated from the recombination of parental viruses harboring the HAdV-1 penton and hexon gene, and the HAdV-2 fiber gene. It was named 'P1H1F2' and was assigned as HAdV-C104 based on the nomenclature protocol of using three major capsid proteins for characterization. Subsequent in vitro experiments demonstrated that HAdV-C104 had comparable proliferation capacity to HAdV-1, HAdV-2, and another recombination genotype P1H2F2. In addition, the HAdV-C104 infected patient was diagnosed with pneumonia and recovered after antiviral therapy. This report strengthens the hypothesis of recombination as a major pathway for the molecular evolution of HAdV-C species.

9.
Virol Sin ; 36(3): 354-364, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32458297

RESUMEN

Human adenoviruses (HAdVs) are highly contagious and result in large number of acute respiratory disease (ARD) cases with severe morbidity and mortality. Human adenovirus type 3 (HAdV-3) is the most common type that causes ARD outbreaks in Asia, Europe, and the Americas. However, there is currently no vaccine approved for its general use. The hexon protein contains the main neutralizing epitopes, provoking strong and lasting immunogenicity. In this study, a novel recombinant and attenuated adenovirus vaccine candidate against HAdV-3 was constructed based on a commercially-available replication-defective HAdV-5 gene therapy and vaccine vector. The entire HAdV-3 hexon gene was integrated into the E1 region of the vector by homologous recombination using a bacterial system. The resultant recombinants expressing the HAdV-3 hexon protein were rescued in AD293 cells, identified and characterized by RT-PCR, Western blots, indirect immunofluorescence, and electron microscopy. This potential vaccine candidate had a similar replicative efficacy as the wild-type HAdV-3 strain. However, and importantly, the vaccine strain had been rendered replication-defective and was incapable of replication in A549 cells after more than twenty-generation passages in AD293 cells. This represents a significant safety feature. The mice immunized both intranasally and intramuscularly by this vaccine candidate raised significant neutralizing antibodies against HAdV-3. Therefore, this recombinant, attenuated, and safe adenovirus vaccine is a promising HAdV-3 vaccine candidate. The strategy of using a clinically approved and replication-defective HAdV-5 vector provides a novel approach to develop universal adenovirus vaccine candidates against all the other types of adenoviruses causing ARDs and perhaps other adenovirus-associated diseases.


Asunto(s)
Infecciones por Adenovirus Humanos , Vacunas contra el Adenovirus , Adenovirus Humanos , Adenovirus Humanos/genética , Animales , Anticuerpos Antivirales , Asia , Europa (Continente) , Ratones , Ratones Endogámicos BALB C
10.
Front Microbiol ; 11: 1079, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32547518

RESUMEN

The trivalent seasonal influenza vaccine was the only approved and available vaccine during the 2016-2018 influenza seasons. It did not include the B/Yamagata strain. In this study, we report an acute respiratory disease outbreak associated with influenza B/Yamagata infections in Guangzhou, Southern China (January through March, 2018). Among the 9914 patients, 2241 (22.6%) were positive for the influenza B virus, with only 312 (3.1%) positive for the influenza A virus. The influenza B/Yamagata lineage dominated during this period in Southern China. The highest incidence of influenza A virus infection occurred in the children aged 5-14 years. In contrast, populations across all age groups were susceptible to the influenza B virus. Phylogenetic, mutations, and 3D structure analyses of hemagglutinin (HA) genes were performed to assess the vaccine-virus relatedness. The recommended A/H1N1 vaccine strain (A/Michigan/45/2015) during both 2017-2018 and 2018-2019 was antigen-specific for these circulating isolates (clade 6B.1) in Spring 2018. An outbreak of influenza B/Yamagata (clade 3) infections in 2018 occurred during the absence of the corresponding vaccine during 2016-2018. The recommended influenza B/Yamagata vaccine strain (B/Phuket/3073/2013) for the following season (2018-2019) was antigen-specific. Although there were only a few influenza B/Victoria infections in Spring 2018, five amino acid mutations were identified in the HA antigenic sites of the 19 B/Victoria isolates (clade 1A), when compared with the 2016-2018 B/Victoria vaccine strain. The number was larger than expected and suggested that the influenza B HA gene may be more variable than previously thought. One of the mutations (K180N) was noted to likely alter the epitope and to potentially affect the viral antigenicity. Seven mutations were also identified in the HA antigenic sites of 2018-2020 B/Victoria vaccine strain, of which some or all may reduce immunogenicity and the protective efficacy of the vaccine, perhaps leading to more outbreaks in subsequent seasons. The combined epidemiological, phylogenetic, mutations, and 3D structural analyses of the HA genes of influenza strains reported here contribute to the understanding and evaluation of how HA mutations affect vaccine efficacy, as well as to providing important data for screening and selecting more specific, appropriate, and effective influenza vaccine candidate strains.

11.
Cladistics ; 36(4): 358-373, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-34618969

RESUMEN

With the advent of high-resolution and cost-effective genomics and bioinformatics tools and methods contributing to a large database of both human (HAdV) and simian (SAdV) adenoviruses, a genomics-based re-evaluation of their taxonomy is warranted. Interest in these particular adenoviruses is growing in part due to the applications of both in gene transfer protocols, including gene therapy and vaccines, as well in oncolytic protocols. In particular, the re-evaluation of SAdVs as appropriate vectors in humans is important as zoonosis precludes the assumption that human immune system may be naïve to these vectors. Additionally, as important pathogens, adenoviruses are a model organism system for understanding viral pathogen emergence through zoonosis and anthroponosis, particularly among the primate species, along with recombination, host adaptation, and selection, as evidenced by one long-standing human respiratory pathogen HAdV-4 and a recent re-evaluation of another, HAdV-76. The latter reflects the insights on amphizoonosis, defined as infections in both directions among host species including "other than human", that are possible with the growing database of nonhuman adenovirus genomes. HAdV-76 is a recombinant that has been isolated from human, chimpanzee, and bonobo hosts. On-going and potential impacts of adenoviruses on public health and translational medicine drive this evaluation of 174 whole genome sequences from HAdVs and SAdVs archived in GenBank. The conclusion is that rather than separate HAdV and SAdV phylogenetic lineages, a single, intertwined tree is observed with all HAdVs and SAdVs forming mixed clades. Therefore, a single designation of "primate adenovirus" (PrAdV) superseding either HAdV and SAdV is proposed, or alternatively, keeping HAdV for human adenovirus but expanding the SAdV nomenclature officially to include host species identification as in ChAdV for chimpanzee adenovirus, GoAdV for gorilla adenovirus, BoAdV for bonobo adenovirus, and ad libitum.


Asunto(s)
Adenovirus Humanos/genética , Adenovirus de los Simios/genética , Genoma Viral , Infecciones por Adenoviridae , Adenovirus Humanos/clasificación , Adenovirus de los Simios/clasificación , Animales , Evolución Molecular , Genómica , Humanos , Filogenia , Zoonosis
12.
J Infect Dis ; 221(4): 566-577, 2020 02 03.
Artículo en Inglés | MEDLINE | ID: mdl-31563943

RESUMEN

BACKGROUND: A number of serious human adenovirus (HAdV) outbreaks have been recently reported: HAdV-B7 (Israel, Singapore, and USA), HAdV-B7d (USA and China), HAdV-D8, -D54, and -C2 (Japan), HAdV-B14p1 (USA, Europe, and China), and HAdV-B55 (China, Singapore, and France). METHODS: To understand the epidemiology of HAdV infections in Singapore, we studied 533 HAdV-positive clinical samples collected from 396 pediatric and 137 adult patients in Singapore from 2012 to 2018. Genome sequencing and phylogenetic analyses were performed to identify HAdV genotypes, clonal clusters, and recombinant or novel HAdVs. RESULTS: The most prevalent genotypes identified were HAdV-B3 (35.6%), HAdV-B7 (15.4%), and HAdV-E4 (15.2%). We detected 4 new HAdV-C strains and detected incursions with HAdV-B7 (odds ratio [OR], 14.6; 95% confidence interval [CI], 4.1-52.0) and HAdV-E4 (OR, 13.6; 95% CI, 3.9-46.7) among pediatric patients over time. In addition, immunocompromised patients (adjusted OR [aOR], 11.4; 95% CI, 3.8-34.8) and patients infected with HAdV-C2 (aOR, 8.5; 95% CI, 1.5-48.0), HAdV-B7 (aOR, 3.7; 95% CI, 1.2-10.9), or HAdV-E4 (aOR, 3.2; 95% CI, 1.1-8.9) were at increased risk for severe disease. CONCLUSIONS: Singapore would benefit from more frequent studies of clinical HAdV genotypes to identify patients at risk for severe disease and help guide the use of new antiviral therapies, such as brincidofovir, and potential administration of HAdV 4 and 7 vaccine.


Asunto(s)
Infecciones por Adenovirus Humanos/diagnóstico , Infecciones por Adenovirus Humanos/epidemiología , Adenovirus Humanos/genética , Pruebas Diagnósticas de Rutina/métodos , Brotes de Enfermedades/prevención & control , Genotipo , Infecciones del Sistema Respiratorio/epidemiología , Infecciones por Adenovirus Humanos/tratamiento farmacológico , Infecciones por Adenovirus Humanos/prevención & control , Vacunas contra el Adenovirus/inmunología , Vacunas contra el Adenovirus/uso terapéutico , Adenovirus Humanos/inmunología , Adolescente , Adulto , Antivirales/uso terapéutico , Niño , Preescolar , ADN Viral/genética , Femenino , Humanos , Lactante , Masculino , Persona de Mediana Edad , Filogenia , Estudios Prospectivos , Infecciones del Sistema Respiratorio/tratamiento farmacológico , Infecciones del Sistema Respiratorio/prevención & control , Infecciones del Sistema Respiratorio/virología , Estudios Retrospectivos , Factores de Riesgo , Índice de Severidad de la Enfermedad , Singapur/epidemiología , Secuenciación Completa del Genoma
13.
Emerg Microbes Infect ; 8(1): 1679-1687, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31749409

RESUMEN

Adenoviruses (AdVs) are major contributors to clinical illnesses. Novel human and animal AdVs continue to be identified and characterized. Comparative analyses using bioinformatic methods and Omics-based technologies allow insights into how these human pathogens have emerged and their potential for host cross-species transmission. Systematic review of literature published across ProQuest, Pubmed, and Web of Science databases for evidence of adenoviral zoonotic potential identified 589 citations. After removing duplicates, 327 citations were screened for relevance; of which, 74 articles received full-text reviews. Among these, 24 were included here, of which 16 demonstrated evidence of zoonotic transmission of AdVs. These documented instances of AdV crossing host species barriers between humans and non-human primate, bat, feline, swine, canine, ovine, and caprine. Eight studies sought to but did not find evidence of zoonosis. The findings demonstrate substantial evidence suggesting AdVs have previously and will continue crossing host species barriers. These have human health consequences both in terms of novel pathogen emergence and epidemic outbreaks, and of appropriate and safe use of non-human adenoviruses for therapeutics. As routine human clinical diagnostics may miss a novel cross-species adenovirus infection in humans, next generation sequencing or panspecies molecular diagnostics may be necessary to detect such incursions.


Asunto(s)
Infecciones por Adenoviridae/transmisión , Infecciones por Adenoviridae/veterinaria , Adenoviridae/fisiología , Zoonosis/transmisión , Adenoviridae/genética , Infecciones por Adenoviridae/virología , Animales , Gatos , Perros , Cabras , Especificidad del Huésped , Humanos , Filogenia , Ovinos , Porcinos , Zoonosis/virología
14.
FEBS Lett ; 593(24): 3583-3608, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31769017

RESUMEN

Human adenovirus commonly causes infections of respiratory, gastrointestinal, genitourinary, and ocular surface mucosae. Although most adenovirus eye infections are mild and self-limited, specific viruses within human adenovirus species D are associated with epidemic keratoconjunctivitis (EKC), a severe and highly contagious ocular surface infection, which can lead to chronic and/or recurrent, visually disabling keratitis. In this review, we discuss the links between adenovirus ontogeny, genomics, immune responses, and corneal pathogenesis, for those viruses that cause EKC.


Asunto(s)
Adenovirus Humanos/patogenicidad , Evolución Biológica , Proteínas del Ojo/genética , Interacciones Huésped-Patógeno/genética , Queratitis/genética , Queratoconjuntivitis/genética , Proteínas Virales/genética , Adenovirus Humanos/genética , Adenovirus Humanos/inmunología , Animales , Conjuntiva/inmunología , Conjuntiva/metabolismo , Conjuntiva/patología , Conjuntiva/virología , Córnea/inmunología , Córnea/metabolismo , Córnea/patología , Córnea/virología , Modelos Animales de Enfermedad , Proteínas del Ojo/inmunología , Regulación de la Expresión Génica , Genómica/métodos , Interacciones Huésped-Patógeno/inmunología , Humanos , Inmunidad Innata , Queratitis/inmunología , Queratitis/patología , Queratitis/virología , Queratoconjuntivitis/inmunología , Queratoconjuntivitis/patología , Queratoconjuntivitis/virología , Filogenia , Proteínas Virales/inmunología , Tropismo Viral/genética , Tropismo Viral/inmunología
15.
J Virol ; 93(18)2019 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-31243128

RESUMEN

Genomics analysis of a historically intriguing and predicted emergent human adenovirus (HAdV) pathogen, which caused pneumonia and death, provides insight into a novel molecular evolution pathway involving "ping-pong" zoonosis and anthroponosis. The genome of this promiscuous pathogen is embedded with evidence of unprecedented multiple, multidirectional, stable, and reciprocal cross-species infections of hosts from three species (human, chimpanzee, and bonobo). This recombinant genome, typed as HAdV-B76, is identical to two recently reported simian AdV (SAdV) genomes isolated from chimpanzees and bonobos. Additionally, the presence of a critical adenoviral replication element found in HAdV genomes, in addition to genes that are highly similar to counterparts in other HAdVs, reinforces its potential as a human pathogen. Reservoirs in nonhuman hosts may explain periods of apparent absence and then reemergence of human adenoviral pathogens, as well as present pathways for the genesis of those thought to be newly emergent. The nature of the HAdV-D76 genome has implications for the use of SAdVs as gene delivery vectors in human gene therapy and vaccines, selected to avoid preexisting and potentially fatal host immune responses to HAdV.IMPORTANCE An emergent adenoviral human pathogen, HAdV-B76, associated with a fatality in 1965, shows a remarkable degree of genome identity with two recently isolated simian adenoviruses that contain cross-species genome recombination events from three hosts: human, chimpanzee, and bonobo. Zoonosis (nonhuman-to-human transmission) and anthroponosis (human to nonhuman transmission) may play significant roles in the emergence of human adenoviral pathogens.


Asunto(s)
Adenovirus Humanos/genética , Adenovirus de los Simios/genética , Infecciones por Adenovirus Humanos/virología , Adenovirus Humanos/patogenicidad , Adenovirus de los Simios/patogenicidad , Animales , Biología Computacional/métodos , ADN Viral/genética , Evolución Molecular , Genoma Viral/genética , Genómica/métodos , Humanos , Pan paniscus/virología , Pan troglodytes/virología , Filogenia , Recombinación Genética/genética , Zoonosis
16.
Viruses ; 11(2)2019 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-30708990

RESUMEN

Human adenovirus type 4 (HAdV-E4), which is intriguingly limited to military populations, causes acute respiratory disease with demonstrated morbidity and mortality implications. This respiratory pathogen contains genome identity with chimpanzee adenoviruses, indicating zoonotic origins. A signature of these "old" HAdV-E4 is the absence of a critical replication motif, NF-I, which is found in all HAdV respiratory pathogens and most HAdVs. However, our recent survey of flu-like disease in children in Hong Kong reveals that the emergent HAdV-E4 pathogens circulating in civilian populations contain NF-I, indicating recombination and reflecting host-adaptation that enables the "new" HAdV-E4 to replicate more efficiently in human cells and foretells more potential HAdV-E4 outbreaks in immune-naïve civilian populations. Special attention should be paid by clinicians to this emergent and recombinant HAdV-E4 circulating in civilian populations.


Asunto(s)
Infecciones por Adenovirus Humanos/epidemiología , Adenovirus Humanos/genética , Enfermedades Transmisibles Emergentes/virología , Recombinación Genética , Infecciones del Sistema Respiratorio/virología , Adaptación Biológica/genética , Adenovirus Humanos/patogenicidad , Niño , Enfermedades Transmisibles Emergentes/epidemiología , ADN Viral/genética , Evolución Molecular , Genoma Viral , Hong Kong/epidemiología , Hospitales/estadística & datos numéricos , Humanos , Pacientes Internos , Nasofaringe/virología , Pacientes Ambulatorios , Filogenia , Infecciones del Sistema Respiratorio/epidemiología
17.
Viruses ; 11(2)2019 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-30744049

RESUMEN

Adenovirus E1A is the first viral protein expressed during infection. E1A controls critical aspects of downstream viral gene expression and cell cycle deregulation, and its function is thought to be highly conserved among adenoviruses. Various bioinformatics analyses of E1A from 38 human adenoviruses of species D (HAdV-D), including likelihood clade model partitioning, provided highly significant evidence of divergence of HAdV-Ds into two distinct groups for the conserved region 3 (CR3), present only in the E1A 13S isoform. This variance within E1A 13S of HAdV-Ds was not found in any other human adenovirus (HAdV) species. By protein sequence and structural analysis, the zinc finger motif of E1A CR3, previously shown as critical for transcriptional activation, showed the greatest differences. Subsequent codon usage bias analysis revealed substantial divergence in E1A 13S between the two groups of HAdV-Ds, suggesting that these two sub-groups of HAdV-D evolved under different cellular conditions. Hence, HAdV-D E1A embodies a previously unappreciated evolutionary divergence among HAdVs.


Asunto(s)
Proteínas E1A de Adenovirus/genética , Adenovirus Humanos/genética , Evolución Molecular , Dedos de Zinc , Biología Computacional , Secuencia Conservada , Regulación Viral de la Expresión Génica , Humanos , Isoformas de Proteínas/genética , Análisis de Secuencia de ADN , Activación Transcripcional
18.
Front Microbiol ; 9: 3005, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30555456

RESUMEN

[This corrects the article DOI: 10.3389/fmicb.2018.02178.].

20.
Front Microbiol ; 9: 2178, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30254627

RESUMEN

Human adenovirus (HAdV) infections cause disease world-wide. Whole genome sequencing has now distinguished 90 distinct genotypes in 7 species (A-G). Over half of these 90 HAdVs fall within species D, with essentially all of the HAdV-D whole genome sequences generated in the last decade. Herein, we describe recent new findings made possible by mining of this expanded genome database, and propose future directions to elucidate new functional elements and new functions for previously known viral components.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...