Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Polymers (Basel) ; 16(3)2024 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-38337198

RESUMEN

A styrene-butadiene-styrene co-polymer matrix nanocomposite filled with graphene nanoplatelets was studied to prepare chemiresistive volatile organic compounds (VOCs) room temperature sensors with considerable response and selectivity. Nanofiller concentration was estimated from the electrical conductivity percolation behaviour of the nanocomposite. Fabricated sensors provided selective relative responses to representative VOCs differing by orders of magnitude. Maximum observed average relative responses upon exposure to saturated vapours of the tested VOCs were ca. 23% for ethanol, 1600% for acetone, and the giant values were 9 × 106% for n-heptane and 10 × 106% for toluene. The insensitivity of the sensor to the direct saturated water vapour exposure was verified. Although high humidity decreases the sensor's response, it paradoxically enhances the resolution between hydrocarbons and polar organics. The non-trivial sensing mechanism is explained using the Hansen solubility parameters (HSP), enabling a rational design of new sensors; thus, the HSP-based class of sensors is outlined.

2.
Pharmaceuticals (Basel) ; 16(4)2023 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-37111260

RESUMEN

A new solution for local anesthetic and antibiotic delivery after eye surgery is presented. A contact lens-shaped collagen drug carrier was created and loaded by Levofloxacin and Tetracaine with a riboflavin crosslinked surface layer, thus impeding diffusion. The crosslinking was confirmed by Raman spectroscopy, whereas the drug release was investigated using UV-Vis spectrometry. Due to the surface barrier, the drug gradually releases into the corneal tissue. To test the function of the carrier, a 3D printed device and a new test method for a controlled drug release, which mimics the geometry and physiological lacrimation rate of the human eye, were developed. The experimental setup with simple geometry revealed that the prepared drug delivery device can provide the prolonged release profile of the pseudo-first-order for up to 72 h. The efficiency of the drug delivery was further demonstrated using a dead porcine cornea as a drug recipient, without the need to use live animals for testing. Our drug delivery system significantly surpasses the efficiency of antibiotic and anesthetic eyedrops that would have to be applied approximately 30 times per hour to achieve the same dose as that delivered continuously by our device.

3.
Int J Mol Sci ; 23(15)2022 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-35955965

RESUMEN

New anti-octadecaborane(22) laser dyes have been recently introduced. However, their application in solid thin films is limited, despite being very desirable for electronics. Spectroscopic methods, photoluminescence (PL), and infrared reflection-absorption spectroscopy (IRRAS), are here used to reveal structural responses to a temperature change in thin polymer films made of π- and σ-conjugated and non-conjugated polymers and anti-octadecaborane(22) and its tetra-alkylatedderivatives. It has been observed that borane clusters are not firmly fixed within polymer matrices and that their ability for diffusion out of the polymer film is unprecedented, especially at higher temperatures. This ability is related to thermodynamic transitions of polymer macromolecular chains. PL and IRRAS spectra have revealed a clear correlation with ß-transition and α-transition of polymers. The influence of structure and molecular weight of a polymer and the concentration and the substitution type of clusters on mobility of borane clusters within the polymer matrix is demonstrated. A solution is proposed that led to an improvement of the temperature stability of films by 45 °C. The well-known spectroscopic methods have proved to be powerful tools for a non-routine description of the temperature behavior of both borane clusters and polymer matrices.


Asunto(s)
Boranos , Polímeros , Colorantes , Rayos Láser , Polímeros/química , Espectrofotometría Infrarroja , Temperatura
4.
Polymers (Basel) ; 14(3)2022 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-35160630

RESUMEN

Electronic devices based on polymer thin films have experienced a tremendous increase in their efficiency in the last two decades. One of the critical factors that affects the efficiency of polymer solar cells or light emitting devices is the presence of structural defects that controls non-radiative recombination. The purpose of this report is to demonstrate a non-trivial thickness dependence of optoelectronic properties and structure (dis)order in thin conductive poly(9,9-dioctyfluorene-alt-benzothiadiazole), F8BT, polymer films. The UV-Vis absorption spectra exhibited blue shift and peak broadening; significant changes in 0-0 and 0-1 radiative transition intensity was found in photoluminescence emission spectra. The density of state (DOS) was directly mapped by energy resolved-electrochemical impedance spectroscopy (ER-EIS). Satellite states 0.5 eV below the lowest unoccupied molecular orbital (LUMO) band were revealed for the thinner polymer films. Moreover, the decreasing of the deep states density in the band gap manifested an increment in the material structural ordering with increasing thickness. Changes in the ratio between crystalline phases with face-on and edge-on orientation of F8BT chains were identified in the films by grazing-incidence wide angle X-ray scattering technique. A thickness threshold in all investigated aspects of the films at a thickness of about 100 nm was observed that can be attributed to the development of J-H aggregation in the film structure and mutual interplay between these two modes. Although a specific structure-property relationship thickness threshold value may be expected for thin films prepared from various polymers, solvents and under different process conditions, the value of about 100 nm can be generally considered as the characteristic length scale of this phenomenon.

5.
Langmuir ; 37(28): 8557-8568, 2021 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-34233120

RESUMEN

Here, we present an integrated approach to the weakly viscoelastic fluid printability assessment by using global dimensionless criteria (DC). The problem was studied on a model semidiluted polyvinylpyrrolidone water-based ink. For the study purpose, the ink composition was kept as simple as possible. First, the solution density, viscosity, and surface tension were determined. Obtained data were used for testing limitations of DC printability diagrams already available for Newtonian fluids. A replotted version of the original Kim and Baek's map was developed emphasizing the importance of surface tension in the drop formation process. Another set of DC (e.g., Ec and De) was also used for a real evaluation of the viscoelasticity effect on both jetting conditions and drop formation. The polymer relaxation time as a crucial parameter for viscoelasticity was shown to be calculated using the Kuhn segment length rather than from Zimm and Rouse theories for diluted polymer systems. Then, a two-dimensional diagram using four DC (Oh and De with Ec and El as parameters) is proposed based on the famous McKinley's work. The diagram describes the interplay of possible forces responsible for filament thinning and breakup processes. Obtained results were supported by further experiments involving drop ejection and formation, determination of critical polymer concentration, and others. The proposed diagram promises a useful initial step in further investigations of viscoelasticity of polymer compounds by inkjet printing.

6.
Materials (Basel) ; 14(3)2021 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-33513832

RESUMEN

In recent work, the boron hydride anti-B18H22 was announced in the literature as a new laser dye, and, along with several of its derivatives, its solutions are capable of delivering blue luminescence with quantum yields of unity. However, as a dopant in solid polymer films, its luminescent efficiencies reduce dramatically. Clarification of underlying detrimental effects is crucial for any application and, thus, this contribution makes the initial steps in the use of these inorganic compounds in electrooptical devices based on organic polymer thin films. The photoluminescence behavior of the highly luminescent boron hydrides, anti-B18H22 and 3,3',4,4'-Et4-anti-B18H18, were therefore investigated. The quantum yields of luminescence and photostabilities of both compounds were studied in different solvents and as polymer-solvent blends. The photophysical properties of both boranes are evaluated and discussed in terms of their solvent-solute interactions using photoluminescence (PL) and NMR spectroscopies. The UV degradability of prepared thin films was studied by fluorimetric measurement. The effect of the surrounding atmosphere, dopant concentration and the molecular structure were assessed.

7.
Polymers (Basel) ; 10(12)2018 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-30961336

RESUMEN

A novel concept based on advanced particle-grafting technology to tailor performance, damping, and surface properties of the magnetorheological elastomers (MREs) is introduced. In this work, the carbonyl iron (CI) particles grafted with poly(trimethylsilyloxyethyl methacrylate) (PHEMATMS) of two different molecular weights were prepared via surface-initiated atom transfer radical polymerization and the relations between the PHEMATMS chain lengths and the MREs properties were investigated. The results show that the magnetorheological performance and damping capability were remarkably influenced by different interaction between polydimethylsiloxane chains as a matrix and PHEMATMS grafts due to their different length. The MRE containing CI grafted with PHEMATMS of higher molecular weight exhibited a greater plasticizing effect and hence both a higher relative magnetorheological effect and enhanced damping capability were observed. Besides bulk MRE properties, the PHEMATMS modifications influenced also field-induced surface activity of the MRE sheets, which manifested as notable changes in surface roughness.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...