Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Biochemistry (Mosc) ; 89(3): 451-461, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38648765

RESUMEN

Ionic liquids (ILs) are organic salts with a low melting point. This is due to the fact that their alkyl side chains, which are covalently connected to the ion, hinder the crystallization of ILs. The low melting point of ILs has led to their widespread use as relatively harmless solvents. However, ILs do have toxic properties, the mechanism of which is largely unknown, so identifying the cellular targets of ILs is of practical importance. In our work, we showed that imidazolium ILs are not able to penetrate model membranes without damaging them. We also found that inactivation of multidrug resistance (MDR) pumps in yeast cells does not increase their sensitivity to imidazolium ILs. The latter indicates that the target of toxicity of imidazolium ILs is not in the cytoplasm. Thus, it can be assumed that the disruption of the barrier properties of the plasma membrane is the main reason for the toxicity of low concentrations of imidazolium ILs. We also showed that supplementation with imidazolium ILs restores the growth of cells with kinetically blocked glycolysis. Apparently, a slight disruption of the plasma membrane caused by ILs can, in some cases, be beneficial for the cell.


Asunto(s)
Membrana Celular , Imidazoles , Líquidos Iónicos , Saccharomyces cerevisiae , Líquidos Iónicos/toxicidad , Líquidos Iónicos/química , Imidazoles/toxicidad , Imidazoles/química , Imidazoles/farmacología , Membrana Celular/efectos de los fármacos , Membrana Celular/metabolismo , Saccharomyces cerevisiae/efectos de los fármacos , Saccharomyces cerevisiae/metabolismo
2.
Biochemistry (Mosc) ; 89(2): 367-370, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38622102

RESUMEN

For most of their lifespan, the probability of death for many animal species increases with age. Gompertz law states that this increase is exponential. In this work, we have compared previously published data on the survival kinetics of different lines of progeric mice. Visual analysis showed that in six lines of these rapidly aging mutants, the probability of death did not strictly depend on age. In contrast, ten lines of progeric mice have survival curves similar to those of the control animals, that is, in agreement with Gompertz law, similar to the shape of an exponential curve upside down. Interestingly, these ten mutations cause completely different cell malfunctions. We speculate that what these mutations have in common is a reduction in the lifespan of cells and/or an acceleration of the transition to the state of cell senescence. Thus, our analysis, similar to the conclusions of many previously published works, indicates that the aging of an organism is a consequence of the aging of individual cells.


Asunto(s)
Envejecimiento , Longevidad , Animales , Ratones , Envejecimiento/fisiología , Senescencia Celular , Mutación
3.
Int J Mol Sci ; 24(16)2023 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-37628720

RESUMEN

Cellular respiration is associated with at least six distinct but intertwined biological functions. (1) biosynthesis of ATP from ADP and inorganic phosphate, (2) consumption of respiratory substrates, (3) support of membrane transport, (4) conversion of respiratory energy to heat, (5) removal of oxygen to prevent oxidative damage, and (6) generation of reactive oxygen species (ROS) as signaling molecules. Here we focus on function #6, which helps the organism control its mitochondria. The ROS bursts typically occur when the mitochondrial membrane potential (MMP) becomes too high, e.g., due to mitochondrial malfunction, leading to cardiolipin (CL) oxidation. Depending on the intensity of CL damage, specific programs for the elimination of damaged mitochondria (mitophagy), whole cells (apoptosis), or organisms (phenoptosis) can be activated. In particular, we consider those mechanisms that suppress ROS generation by enabling ATP synthesis at low MMP levels. We discuss evidence that the mild depolarization mechanism of direct ATP/ADP exchange across mammalian inner and outer mitochondrial membranes weakens with age. We review recent data showing that by protecting CL from oxidation, mitochondria-targeted antioxidants decrease lethality in response to many potentially deadly shock insults. Thus, targeting ROS- and CL-dependent pathways may prevent acute mortality and, hopefully, slow aging.


Asunto(s)
Mitocondrias , Respiración , Animales , Especies Reactivas de Oxígeno , Envejecimiento , Cardiolipinas , Adenosina Trifosfato , Mamíferos
4.
Membranes (Basel) ; 12(12)2022 Dec 17.
Artículo en Inglés | MEDLINE | ID: mdl-36557185

RESUMEN

Yeast S. cerevisiae has been shown to suppress a sterol biosynthesis as a response to hyperosmotic stress. In the case of sodium stress, the failure to suppress biosynthesis leads to an increase in cytosolic sodium. The major yeast sterol, ergosterol, is known to regulate functioning of plasma membrane proteins. Therefore, it has been suggested that the suppression of its biosynthesis is needed to adjust the activity of the plasma membrane sodium pumps and channels. However, as the sterol concentration is in the range of thirty to forty percent of total plasma membrane lipids, it is believed that its primary biological role is not regulatory but structural. Here we studied how lowering the sterol content affects the response of a lipid bilayer to an osmotic stress. In accordance with previous observations, we found that a decrease of the sterol fraction increases a water permeability of the liposomal membranes. Yet, we also found that sterol-free giant unilamellar vesicles reduced their volume during transient application of the hyperosmotic stress to a greater extent than the sterol-rich ones. Furthermore, our data suggest that lowering the sterol content in yeast cells allows the shrinkage to prevent the osmotic pressure-induced plasma membrane rupture. We also found that mutant yeast cells with the elevated level of sterol accumulated propidium iodide when exposed to mild hyperosmotic conditions followed by hypoosmotic stress. It is likely that the decrease in a plasma membrane sterol content stimulates a drop in cell volume under hyperosmotic stress, which is beneficial in the case of a subsequent hypo-osmotic one.

5.
Biochim Biophys Acta Biomembr ; 1864(10): 183993, 2022 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-35724740

RESUMEN

Triterpene glycosides are a diverse group of plant secondary metabolites, consisting of a sterol-like aglycon and one or several sugar groups. A number of triterpene glycosides show membranolytic activity, and, therefore, are considered to be promising antimicrobial drugs. However, the interrelation between their structure, biological activities, and target membrane lipid composition remains elusive. Here we studied the antifungal effects of four Panax triterpene glycosides (ginsenosides) with sugar moieties at the C-3 (ginsenosides Rg3, Rh2), C-20 (compound K), and both (ginsenoside F2) positions in Saccharomyces cerevisiae mutants with altered sterol plasma membrane composition. We observed reduced cytostatic activity of the Rg3 and compound K in the UPC2-1 strain with high membrane sterol content. Moreover, LAM gene deletion reduced yeast resistance to Rg3 and digitonin, another saponin with glycosylated aglycon in the C-3 position. LAM genes encode plasma membrane-anchored StARkin superfamily-member sterol transporters. We also showed that the deletion of the ERG6 gene that inhibits ergosterol biosynthesis at the stage of zymosterol increased the cytostatic effects of Rg3 and Rh2, but not the other two tested ginsenosides. At the same time, in silico simulation revealed that the substitution of ergosterol with zymosterol in the membrane changes the spatial orientation of Rg3 and Rh2 in the membranes. These results imply that the plasma membrane sterol composition defines its interaction with triterpene glycoside depending on their glycoside group position. Our results also suggest that the biological role of membrane-anchored StARkin family protein is to protect eukaryotic cells from triterpenes glycosylated at the C-3 position.


Asunto(s)
Citostáticos , Ginsenósidos , Triterpenos , Ergosterol , Ginsenósidos/metabolismo , Ginsenósidos/farmacología , Saccharomyces cerevisiae/genética , Esteroles , Azúcares , Triterpenos/farmacología
7.
Biomolecules ; 10(9)2020 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-32962296

RESUMEN

Chemicals inducing a mild decrease in the ATP/ADP ratio are considered as caloric restriction mimetics as well as treatments against obesity. Screening for such chemicals in animal model systems requires a lot of time and labor. Here, we present a system for the rapid screening of non-toxic substances causing such a de-energization of cells. We looked for chemicals allowing the growth of yeast lacking trehalose phosphate synthase on a non-fermentable carbon source in the presence of glucose. Under such conditions, the cells cannot grow because the cellular phosphate is mostly being used to phosphorylate the sugars in upper glycolysis, while the biosynthesis of bisphosphoglycerate is blocked. We reasoned that by decreasing the ATP/ADP ratio, one might prevent the phosphorylation of the sugars and also boost bisphosphoglycerate synthesis by providing the substrate, i.e., inorganic phosphate. We confirmed that a complete inhibition of oxidative phosphorylation alleviates the block. As our system includes a non-fermentable carbon source, only the chemicals that did not cause a complete block of mitochondrial ATP synthesis allowed the initial depletion of glucose followed by respiratory growth. Using this system, we found two novel compounds, dodecylmethyl diphenylamine (FS1) and diethyl (tetradecyl) phenyl ammonium bromide (Kor105), which possess a mild membrane-depolarizing activity.


Asunto(s)
Adenosina Trifosfato/metabolismo , Cationes/metabolismo , Glucosa/metabolismo , Glucosiltransferasas/metabolismo , Glucólisis , Saccharomyces cerevisiae/metabolismo , Adenosina Difosfato/metabolismo , Animales , Ácidos Difosfoglicéricos/metabolismo , Glucosiltransferasas/genética , Mitocondrias/metabolismo , Mitocondrias Hepáticas/metabolismo , Modelos Biológicos , Fosforilación Oxidativa , Consumo de Oxígeno , Fosfatos/metabolismo , Ratas , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crecimiento & desarrollo
8.
J Bioenerg Biomembr ; 52(5): 383-395, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32808242

RESUMEN

Pleiotropic drug resistance (PDR) plasma membrane transporters mediate xenobiotic efflux from the cells and thereby help pathogenic microorganisms to withstand antimicrobial therapies. Given that xenobiotic efflux is an energy-consuming process, cells with upregulated PDR can be sensitive to perturbations in cellular energetics. Protonophores dissipate proton gradient across the cellular membranes and thus increase ATP spendings to their maintenance. We hypothesised that chronic exposure of yeast cells to the protonophores can favour the selection of cells with inactive PDR. To test this, we measured growth rates of the wild type Saccharomyces cerevisiae and PDR-deficient Δpdr1Δpdr3 strains in the presence of protonophores carbonyl cyanide-p-trifluoromethoxyphenylhydrazone (FCCP), pentachlorophenol (PCP) and niclosamide (NCA). Although the protonophore-induced respiration rates of these two strains were similar, the PDR-deficient strain outperformed the control one in the growth rate on non-fermentable carbon source supplemented with low concentrations of FCCP. Thus, active PDR can be deleterious under conditions of partially uncoupled oxidative-phosphorylation. Furthermore, our results suggest that tested anionic protonophores are poor substrates of PDR-transporters. At the same time, protonophores imparted azole tolerance to yeasts, pointing that they are potent PDR inducers. Interestingly, protonophore PCP led to a persistent increase in the levels of a major ABC-transporter Pdr5p, while azole clotrimazole induced only a temporary increase. Together, our data provides an insight into the effects of the protonophores in the eukaryotes at the cellular level and support the idea that cells with activated PDR can be selected out upon conditions of energy limitations.


Asunto(s)
Carbonil Cianuro p-Trifluorometoxifenil Hidrazona/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Transporte Biológico
9.
Proc Natl Acad Sci U S A ; 117(12): 6491-6501, 2020 03 24.
Artículo en Inglés | MEDLINE | ID: mdl-32152094

RESUMEN

The mitochondria of various tissues from mice, naked mole rats (NMRs), and bats possess two mechanistically similar systems to prevent the generation of mitochondrial reactive oxygen species (mROS): hexokinases I and II and creatine kinase bound to mitochondrial membranes. Both systems operate in a manner such that one of the kinase substrates (mitochondrial ATP) is electrophoretically transported by the ATP/ADP antiporter to the catalytic site of bound hexokinase or bound creatine kinase without ATP dilution in the cytosol. One of the kinase reaction products, ADP, is transported back to the mitochondrial matrix via the antiporter, again through an electrophoretic process without cytosol dilution. The system in question continuously supports H+-ATP synthase with ADP until glucose or creatine is available. Under these conditions, the membrane potential, ∆ψ, is maintained at a lower than maximal level (i.e., mild depolarization of mitochondria). This ∆ψ decrease is sufficient to completely inhibit mROS generation. In 2.5-y-old mice, mild depolarization disappears in the skeletal muscles, diaphragm, heart, spleen, and brain and partially in the lung and kidney. This age-dependent decrease in the levels of bound kinases is not observed in NMRs and bats for many years. As a result, ROS-mediated protein damage, which is substantial during the aging of short-lived mice, is stabilized at low levels during the aging of long-lived NMRs and bats. It is suggested that this mitochondrial mild depolarization is a crucial component of the mitochondrial anti-aging system.


Asunto(s)
Envejecimiento , Mitocondrias/fisiología , Membranas Mitocondriales/fisiología , Adenosina Difosfato/metabolismo , Animales , Quirópteros , Creatina/metabolismo , Transporte de Electrón , Embrión de Mamíferos , Glucosa/metabolismo , Hexoquinasa/metabolismo , Potencial de la Membrana Mitocondrial , Ratones , Mitocondrias/metabolismo , Membranas Mitocondriales/enzimología , Membranas Mitocondriales/metabolismo , Proteínas Mitocondriales/metabolismo , Ratas Topo , Especificidad de Órganos , Especies Reactivas de Oxígeno/metabolismo , Especificidad de la Especie
10.
Front Microbiol ; 11: 38, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32047490

RESUMEN

Lam proteins transport sterols between the membranes of different cellular compartments. In Saccharomyces cerevisiae, the LAM gene family consists of three pairs of paralogs. Because the function of paralogous genes can be redundant, the phenotypes of only a small number of LAM gene deletions have been reported; thus, the role of these genes in yeast physiology is still unclear. Here, we surveyed the phenotypes of double and quadruple deletants of paralogous LAM2(YSP2)/LAM4 and LAM1(YSP1)/LAM3(SIP3) genes that encode proteins localized in the junctions of the plasma membrane and endoplasmic reticulum. The quadruple deletant showed increased sterol content and a strong decrease in ethanol, heat shock and high osmolarity resistance. Surprisingly, the quadruple deletant and LAM2/LAM4 double deletion strain showed increased tolerance to the azole antifungals clotrimazole and miconazole. This effect was not associated with an increased rate of ABC-transporter substrate efflux. Possibly, increased sterol pool in the LAM deletion strains postpones the effect of azoles on cell growth. Alternatively, LAM deletions might alleviate the toxic effect of sterols as Lam proteins can transport toxic sterol biosynthesis intermediates into membrane compartments that are sensitive to these compounds. Our findings reveal novel biological roles of LAM genes in stress tolerance and suggest that mutations in these genes may confer upregulation of a mechanism that provides resistance to azole antifungals in pathogenic fungi.

11.
Eur J Cell Biol ; 99(2-3): 151071, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-32057484

RESUMEN

The mitochondrial network structure dynamically adapts to cellular metabolic challenges. Mitochondrial depolarisation, particularly, induces fragmentation of the network. This fragmentation may be a result of either a direct regulation of the mitochondrial fusion machinery by transmembrane potential or an indirect effect of metabolic remodelling. Activities of ATP synthase and adenine nucleotide translocator (ANT) link the mitochondrial transmembrane potential with the cytosolic NTP/NDP ratio. Given that mitochondrial fusion requires cytosolic GTP, a decrease in the NTP/NDP ratio might also account for protonophore-induced mitochondrial fragmentation. For evaluating the contributions of direct and indirect mechanisms to mitochondrial remodelling, we assessed the morphology of the mitochondrial network in yeast cells with inhibited ANT. We showed that the repression of AAC2 (PET9), a major ANT gene in yeast, increases mitochondrial transmembrane potential. However, the mitochondrial network in this strain was fragmented. Meanwhile, AAC2 repression did not prevent mitochondrial fusion in zygotes; nor did it inhibit mitochondrial hyperfusion induced by Dnm1p inhibitor mdivi-1. These results suggest that the inhibition of ANT, rather than preventing mitochondrial fusion, facilitates mitochondrial fission. The protonophores were not able to induce additional mitochondrial fragmentation in an AAC2-repressed strain and in yeast cells with inhibited ATP synthase. Importantly, treatment with the ATP synthase inhibitor oligomycin A also induced mitochondrial fragmentation and hyperpolarization. Taken together, our data suggest that ATP/ADP translocation plays a crucial role in shaping of the mitochondrial network and exemplify that an increase in mitochondrial membrane potential does not necessarily oppose mitochondrial fragmentation.


Asunto(s)
Nucleótidos de Adenina/genética , Secuencia de Aminoácidos/genética , Translocación Genética/genética , Humanos , Dinámicas Mitocondriales
12.
Biomolecules ; 9(10)2019 10 18.
Artículo en Inglés | MEDLINE | ID: mdl-31635312

RESUMEN

Sterols change the biophysical properties of lipid membranes. Here, we analyzed how sterols affect the activity of widely used antimicrobial membrane-active compounds, sodium dodecyl sulfate (SDS) and benzalkonium chloride (BAC). We also tested a novel benzalkonium-like substance, Kor105. Our data suggest that benzalkonium and Kor105 disturb the ordering of the membrane lipid packaging, and this disturbance is dampened by cholesterol. The disturbance induced by Kor105 is stronger than that induced by BAC because of the higher rigidity of the Kor105 molecule due to a shorter linker between the phenyl group and quaternary nitrogen. On the contrary, individual SDS molecules do not cause the disturbance. Thus, in the tested range of concentrations, SDS-membrane interaction is not influenced by cholesterol. To study how sterols influence the biological effects of these chemicals, we used yeast strains lacking Lam1-4 proteins. These proteins transport sterols from the plasma membrane into the endoplasmic reticulum. We found that the mutants are resistant to BAC and Kor105 but hypersensitive to SDS. Together, our findings show that sterols influence the interaction of SDS versus benzalkonium chloride and Kor105 with the membranes in a completely different manner.


Asunto(s)
Compuestos de Benzalconio/química , Lípidos de la Membrana/química , Compuestos de Amonio Cuaternario/química , Dodecil Sulfato de Sodio/química , Esteroles/química , Interacciones Hidrofóbicas e Hidrofílicas , Simulación de Dinámica Molecular , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crecimiento & desarrollo
13.
Mech Ageing Dev ; 176: 24-31, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30292690

RESUMEN

While deviations from the optimal phenotype are deleterious, increased variation can prevent population extinction under severe stresses. Cell division asymmetry is an important source of microbial phenotypic heterogeneity. A consecutive set of asymmetric divisions can cause the gradual accumulation of deleterious factors and, at late stages, the death of old pole (mother) cells. This phenomenon is known as replicative aging. As the old cells are constantly being diluted by the progeny, the majority of a microbial population is represented by replicatively young cells. Therefore, early-age changes in yeast mother cells have a much greater impact on the integral performance of the microbial population than does functional deterioration at later ages. Here, we review the early manifestations of replicative aging in Saccharomyces cerevisiae mother cells that occur during the first ten cell cycles. Early age-dependent changes occur in stress resistance, genomic instability, protein aggregate levels, redox balance and metabolism. We speculate that some of these manifestations can be beneficial during stress exposure; therefore, early aging may be a bet-hedging mechanism. Together, the data suggest that the age component of variation in populations of asymmetrically dividing microorganisms is substantial and may play an important role in adaptations to changing environments.


Asunto(s)
Adaptación Fisiológica/fisiología , Ciclo Celular/fisiología , Saccharomyces cerevisiae/fisiología , Estrés Fisiológico/fisiología
14.
Science ; 360(6395)2018 06 22.
Artículo en Inglés | MEDLINE | ID: mdl-29930109

RESUMEN

Shlezinger et al (Reports, 8 September 2017, p. 1037) report that the common fungus Aspergillus fumigatus, a cause of aspergillosis, undergoes caspase-dependent apoptosis-like cell death triggered by lung neutrophils. However, the technologies they used do not provide reliable evidence that fungal cells die via a protease signaling cascade thwarted by a fungal caspase inhibitor homologous to human survivin.


Asunto(s)
Aspergilosis/inmunología , Aspergillus fumigatus/inmunología , Apoptosis/inmunología , Muerte Celular , Humanos , Pulmón/inmunología
15.
Sci Rep ; 8(1): 8131, 2018 05 25.
Artículo en Inglés | MEDLINE | ID: mdl-29802261

RESUMEN

Substrates of pleiotropic drug resistance (PDR) transporters can induce the expression of corresponding transporter genes by binding to their transcription factors. Penetrating cations are substrates of PDR transporters and theoretically may also activate the expression of transporter genes. However, the accumulation of penetrating cations inside mitochondria may prevent the sensing of these molecules. Thus, whether penetrating cations induce PDR is unclear. Using Saccharomyces cerevisiae as a model, we studied the effects of penetrating cations on the activation of PDR. We found that the lipophilic cation dodecyltriphenylphosphonium (C12TPP) induced the expression of the plasma membrane PDR transporter genes PDR5, SNQ2 and YOR1. Moreover, a 1-hour incubation with C12TPP increased the concentration of Pdr5p and Snq2p and prevented the accumulation of the PDR transporter substrate Nile red. The transcription factor PDR1 was required to mediate these effects, while PDR3 was dispensable. The deletion of the YAP1 or RTG2 genes encoding components of the mitochondria-to-nucleus signalling pathway did not prevent the C12TPP-induced increase in Pdr5-GFP. Taken together, our data suggest (i) that the sequestration of lipophilic cations inside mitochondria does not significantly inhibit sensing by PDR activators and (ii) that the activation mechanisms do not require mitochondria as a signalling module.


Asunto(s)
Farmacorresistencia Fúngica/efectos de los fármacos , Farmacorresistencia Fúngica/genética , Pleiotropía Genética/efectos de los fármacos , Compuestos Organofosforados/farmacología , Núcleo Celular/efectos de los fármacos , Núcleo Celular/metabolismo , Proteínas de Unión al ADN/deficiencia , Proteínas de Unión al ADN/genética , Eliminación de Gen , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/efectos de los fármacos , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética , Factores de Transcripción/deficiencia , Factores de Transcripción/genética
16.
Sci Rep ; 7(1): 13220, 2017 10 16.
Artículo en Inglés | MEDLINE | ID: mdl-29038504

RESUMEN

Asymmetrical division can be a reason for microbial populations heterogeneity. In particular, budding yeast daughter cells are more vulnerable to stresses than the mothers. It was suggested that yeast mother cells could also differ from each other depending on their replicative age. To test this, we measured the levels of Idh1-GFP, Idh2-GFP, Trx2-GFP, Pdr5-GFP and Can1-GFP proteins in cells of the few first, most represented, age cohorts. Pdr5p and Can1p were selected because of the pronounced mother-bud asymmetry for these proteins distributions, Trx2p as indicator of oxidative stress. Isocitrate dehydrogenase subunits Idh1p and Idh2p were assessed because their levels are regulated by mitochondria. We found a small negative correlation between yeast replicative age and Idh1-GFP or Idh2-GFP but not Trx2-GFP levels. Mitochondrial network fragmentation was also confirmed as an early event of replicative aging. No significant difference in the membrane proteins levels Pdr5p and Can1p was found. Moreover, the elder mother cells showed lower coefficient of variation for Pdr5p levels compared to the younger ones and the daughters. Our data suggest that the levels of stress-response proteins Pdr5p and Trx2p in the mother cells are stable during the first few cell cycles regardless of their mother-bud asymmetry.


Asunto(s)
Envejecimiento , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Transportadoras de Casetes de Unión a ATP/metabolismo , Sistemas de Transporte de Aminoácidos Básicos/metabolismo , Mitocondrias/metabolismo , Modelos Biológicos , Estrés Oxidativo , Isoformas de Proteínas/metabolismo , Tiorredoxinas/metabolismo
17.
J Cell Sci ; 130(7): 1274-1284, 2017 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-28193734

RESUMEN

Non-identical copies of mitochondrial DNA (mtDNA) compete with each other within a cell and the ultimate variant of mtDNA present depends on their relative replication rates. Using yeast Saccharomyces cerevisiae cells as a model, we studied the effects of mitochondrial inhibitors on the competition between wild-type mtDNA and mutant selfish mtDNA in heteroplasmic zygotes. We found that decreasing mitochondrial transmembrane potential by adding uncouplers or valinomycin changes the competition outcomes in favor of the wild-type mtDNA. This effect was significantly lower in cells with disrupted mitochondria fission or repression of the autophagy-related genes ATG8, ATG32 or ATG33, implying that heteroplasmic zygotes activate mitochondrial degradation in response to the depolarization. Moreover, the rate of mitochondrially targeted GFP turnover was higher in zygotes treated with uncoupler than in haploid cells or untreated zygotes. Finally, we showed that vacuoles of zygotes with uncoupler-activated autophagy contained DNA. Taken together, our data demonstrate that mitochondrial depolarization inhibits clonal expansion of selfish mtDNA and this effect depends on mitochondrial fission and autophagy. These observations suggest an activation of mitochondria quality control mechanisms in heteroplasmic yeast zygotes.


Asunto(s)
ADN Mitocondrial/metabolismo , Potencial de la Membrana Mitocondrial , Mitocondrias/metabolismo , Saccharomyces cerevisiae/metabolismo , Cigoto/metabolismo , Autofagia/efectos de los fármacos , Carbonil Cianuro p-Trifluorometoxifenil Hidrazona/farmacología , Células Clonales , Diploidia , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Potenciales de la Membrana/efectos de los fármacos , Mitocondrias/efectos de los fármacos , Mitocondrias/ultraestructura , Dinámicas Mitocondriales/efectos de los fármacos , Mitofagia/efectos de los fármacos , Saccharomyces cerevisiae/efectos de los fármacos , Saccharomyces cerevisiae/ultraestructura , Cigoto/efectos de los fármacos , Cigoto/ultraestructura
18.
Appl Environ Microbiol ; 83(3)2017 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-27864171

RESUMEN

There are two superoxide dismutases in the yeast Saccharomyces cerevisiae-cytoplasmic and mitochondrial enzymes. Inactivation of the cytoplasmic enzyme, Sod1p, renders the cells sensitive to a variety of stresses, while inactivation of the mitochondrial isoform, Sod2p, typically has a weaker effect. One exception is ethanol-induced stress. Here we studied the role of Sod2p in ethanol tolerance of yeast. First, we found that repression of SOD2 prevents ethanol-induced relocalization of yeast hydrogen peroxide-sensing transcription factor Yap1p, one of the key stress resistance proteins. In agreement with this, the levels of Trx2p and Gsh1p, proteins encoded by Yap1 target genes, were decreased in the absence of Sod2p. Analysis of the ethanol sensitivities of the cells lacking Sod2p, Yap1p, or both indicated that the two proteins act in the same pathway. Moreover, preconditioning with hydrogen peroxide restored the ethanol resistance of yeast cells with repressed SOD2 Interestingly, we found that mitochondrion-to-nucleus signaling by Rtg proteins antagonizes Yap1p activation. Together, our data suggest that hydrogen peroxide produced by Sod2p activates Yap1p and thus plays a signaling role in ethanol tolerance. IMPORTANCE: Baker's yeast harbors multiple systems that ensure tolerance to high concentrations of ethanol. Still, the role of mitochondria under severe ethanol stress in yeast is not completely clear. Our study revealed a signaling function of mitochondria which contributes significantly to the ethanol tolerance of yeast cells. We found that mitochondrial superoxide dismutase Sod2p and cytoplasmic hydrogen peroxide sensor Yap1p act together as a module of the mitochondrion-to-nucleus signaling pathway. We also report cross talk between this pathway and the conventional retrograde signaling cascade activated by dysfunctional mitochondria.


Asunto(s)
Etanol/metabolismo , Regulación Fúngica de la Expresión Génica/efectos de los fármacos , Proteínas Mitocondriales/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/fisiología , Superóxido Dismutasa/genética , Factores de Transcripción/genética , Peróxido de Hidrógeno/metabolismo , Proteínas Mitocondriales/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Transducción de Señal/efectos de los fármacos , Superóxido Dismutasa/metabolismo , Factores de Transcripción/metabolismo
19.
FEMS Yeast Res ; 16(4)2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-27044313

RESUMEN

ABC-transporters with broad substrate specificity are responsible for pathogenic yeast resistance to antifungal compounds. Here we asked whether highly hydrophobic chemicals with delocalized positive charge can be used to overcome the resistance. Such molecules efficiently penetrate the plasma membrane and accumulate inside the cells. We reasoned that these properties can convert an active efflux of the compounds into a futile cycle thus interfering with the extrusion of the antibiotics. To test this, we studied the effects of several alkylated rhodamines on the drug resistance of yeast Saccharomyces cerevisiae We found that octylrhodamine synergetically increases toxicity of Pdr5p substrate-clotrimazole, while the others were less effective. Next, we compared the contributions of three major pleiotropic ABC-transporters (Pdr5p, Yor1p, Snq2p) on the accumulation of the alkylated rhodamines. While all of the tested compounds were extruded by Pdr5p, Yor1p and Snq2p showed narrower substrate specificity. Interestingly, among the tested alkylated rhodamines, inactivation of Pdr5p had the strongest effect on the accumulation of octylrhodamine inside the cells, which is consistent with the fact that clotrimazole is a substrate of Pdr5p. As alkylated rhodamines were shown to be non-toxic on mice, our study makes them potential components of pharmacological antifungal compositions.


Asunto(s)
Transportadoras de Casetes de Unión a ATP/antagonistas & inhibidores , Antifúngicos/farmacología , Compuestos de Benzalconio/farmacología , Clotrimazol/farmacología , Inhibidores Enzimáticos/metabolismo , Rodaminas/metabolismo , Saccharomyces cerevisiae/efectos de los fármacos , Sinergismo Farmacológico , Viabilidad Microbiana/efectos de los fármacos
20.
Microb Cell ; 3(11): 532-539, 2016 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-28357322

RESUMEN

Apart from energy transformation, mitochondria play important signaling roles. In yeast, mitochondrial signaling relies on several molecular cascades. However, it is not clear how a cell detects a particular mitochondrial malfunction. The problem is that there are many possible manifestations of mitochondrial dysfunction. For example, exposure to the specific antibiotics can either decrease (inhibitors of respiratory chain) or increase (inhibitors of ATP-synthase) mitochondrial transmembrane potential. Moreover, even in the absence of the dysfunctions, a cell needs feedback from mitochondria to coordinate mitochondrial biogenesis and/or removal by mitophagy during the division cycle. To cope with the complexity, only a limited set of compounds is monitored by yeast cells to estimate mitochondrial functionality. The known examples of such compounds are ATP, reactive oxygen species, intermediates of amino acids synthesis, short peptides, Fe-S clusters and heme, and also the precursor proteins which fail to be imported by mitochondria. On one hand, the levels of these molecules depend not only on mitochondria. On the other hand, these substances are recognized by the cytosolic sensors which transmit the signals to the nucleus leading to general, as opposed to mitochondria-specific, transcriptional response. Therefore, we argue that both ways of mitochondria-to-nucleus communication in yeast are mostly (if not completely) unspecific, are mediated by the cytosolic signaling machinery and strongly depend on cellular metabolic state.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...