Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Clin Microbiol Rev ; 37(2): e0006022, 2024 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-38717124

RESUMEN

SUMMARYGiven the importance of gut microbial homeostasis in maintaining health, there has been considerable interest in developing innovative therapeutic strategies for restoring gut microbiota. One such approach, fecal microbiota transplantation (FMT), is the main "whole gut microbiome replacement" strategy and has been integrated into clinical practice guidelines for treating recurrent Clostridioides difficile infection (rCDI). Furthermore, the potential application of FMT in other indications such as inflammatory bowel disease (IBD), metabolic syndrome, and solid tumor malignancies is an area of intense interest and active research. However, the complex and variable nature of FMT makes it challenging to address its precise functionality and to assess clinical efficacy and safety in different disease contexts. In this review, we outline clinical applications, efficacy, durability, and safety of FMT and provide a comprehensive assessment of its procedural and administration aspects. The clinical applications of FMT in children and cancer immunotherapy are also described. We focus on data from human studies in IBD in contrast with rCDI to delineate the putative mechanisms of this treatment in IBD as a model, including colonization resistance and functional restoration through bacterial engraftment, modulating effects of virome/phageome, gut metabolome and host interactions, and immunoregulatory actions of FMT. Furthermore, we comprehensively review omics technologies, metagenomic approaches, and bioinformatics pipelines to characterize complex microbial communities and discuss their limitations. FMT regulatory challenges, ethical considerations, and pharmacomicrobiomics are also highlighted to shed light on future development of tailored microbiome-based therapeutics.


Asunto(s)
Trasplante de Microbiota Fecal , Microbioma Gastrointestinal , Trasplante de Microbiota Fecal/métodos , Humanos , Infecciones por Clostridium/terapia , Infecciones por Clostridium/microbiología , Enfermedades Inflamatorias del Intestino/terapia , Enfermedades Inflamatorias del Intestino/microbiología , Animales
2.
Hum Vaccin Immunother ; 19(3): 2268982, 2023 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-37955340

RESUMEN

The gut microbiome has recently been proposed as a key player in cancer development and progression. Several studies have reported that the composition of the gut microbiome plays a role in the response to immune checkpoint inhibitors (ICIs). The gut microbiome modulation has been investigated as a potential therapeutic strategy for cancer, mainly in patients undergoing therapy with ICIs. In particular, modulation through probiotics, FMT or other microbiome-related approaches have proven effective to improve the response to ICIs. In this review, we examine the role of the gut microbiome in enhancing clinical responses to ICIs in the treatment of renal cancer.


Asunto(s)
Carcinoma de Células Renales , Microbioma Gastrointestinal , Neoplasias Renales , Neoplasias , Humanos , Carcinoma de Células Renales/terapia , Inmunoterapia , Neoplasias Renales/terapia , Inhibidores de Puntos de Control Inmunológico/uso terapéutico
3.
Antibiotics (Basel) ; 12(7)2023 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-37508216

RESUMEN

Acute pancreatitis is a complex inflammatory disease with significant morbidity and mortality. Despite advances in its management, the role of antibiotics in the prophylaxis and treatment of acute pancreatitis remains controversial. The aim of this comprehensive review is to analyze current evidence on the use of antibiotics in acute pancreatitis, focusing on prophylactic and therapeutic strategies. Prophylactic use aims to prevent local and systemic infections. However, recent studies have questioned the routine use of antibiotics for prophylaxis and highlighted the potential risks of antibiotic resistance and adverse effects. In selected high-risk cases, such as infected necrotizing pancreatitis, prophylactic antibiotic therapy may still be beneficial. As for therapeutic use, antibiotics are usually used to treat infected pancreatic necrosis and extrapancreatic infections. When selecting an antibiotic, the microbiologic profile and local resistance patterns should be considered. Combination therapy with broad-spectrum antibiotics is often recommended to cover both Gram-positive and Gram-negative pathogens. Recent research has highlighted the importance of individualized approaches to antibiotic use in acute pancreatitis and underscored the need for a tailored approach based on patient-specific factors. This review also highlights the potential role of new antimicrobial agents and alternative strategies, such as probiotics, in the management of acute pancreatitis.

4.
Antibiotics (Basel) ; 12(5)2023 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-37237771

RESUMEN

The human gut is inhabited by a multitude of bacteria, yeasts, and viruses. A dynamic balance among these microorganisms is associated with the well-being of the human being, and a large body of evidence supports a role of dysbiosis in the pathogenesis of several diseases. Given the importance of the gut microbiota in the preservation of human health, probiotics, prebiotics, synbiotics, and postbiotics have been classically used as strategies to modulate the gut microbiota and achieve beneficial effects for the host. Nonetheless, several molecules not typically included in these categories have demonstrated a role in restoring the equilibrium among the components of the gut microbiota. Among these, rifaximin, as well as other antimicrobial drugs, such as triclosan, or natural compounds (including evodiamine and polyphenols) have common pleiotropic characteristics. On one hand, they suppress the growth of dangerous bacteria while promoting beneficial bacteria in the gut microbiota. On the other hand, they contribute to the regulation of the immune response in the case of dysbiosis by directly influencing the immune system and epithelial cells or by inducing the gut bacteria to produce immune-modulatory compounds, such as short-chain fatty acids. Fecal microbiota transplantation (FMT) has also been investigated as a procedure to restore the equilibrium of the gut microbiota and has shown benefits in many diseases, including inflammatory bowel disease, chronic liver disorders, and extraintestinal autoimmune conditions. One of the most significant limits of the current techniques used to modulate the gut microbiota is the lack of tools that can precisely modulate specific members of complex microbial communities. Novel approaches, including the use of engineered probiotic bacteria or bacteriophage-based therapy, have recently appeared as promising strategies to provide targeted and tailored therapeutic modulation of the gut microbiota, but their role in clinical practice has yet to be clarified. The aim of this review is to discuss the most recently introduced innovations in the field of therapeutic microbiome modulation.

5.
J Autoimmun ; 141: 103033, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37085337

RESUMEN

AIMS: Clostridioides difficile infection (CDI) is a major challenge for healthcare systems. Inflammatory bowel disease (IBD), including ulcerative colitis (UC) and Crohn's disease, is a risk factor for primary and recurrent CDI (rCDI). Moreover, CDI itself often worsens the clinical picture of IBD, increasing the risk of complications. Fecal microbiota transplantation (FMT) is a highly effective treatment for rCDI, but data from patients with IBD and CDI are limited and often referred to mixed cohorts. We aimed to report outcomes from a cohort of patients with UC treated with FMT for rCDI superinfection. METHODS AND RESULTS: In a retrospective, single-centre cohort study we evaluated characteristics and outcomes of patients with UC who received FMT for rCDI. The primary outcome was negative C. difficile toxin 8 weeks after FMT. Thirty-five patients were included in the analysis. Sixteen patients were cured after single FMT, while 19 patients received repeat FMT. Overall, FMT cured rCDI in 32 patients (91%), and repeat FMT was significantly associated with sustained cure of CDI compared with single FMT (84% vs 50%, p = 0.018). Twenty-four patients (69%) experienced remission or an amelioration of UC activity. Serious adverse events were not observed. CONCLUSIONS: In our cohort of patients with UC, FMT was highly effective in curing rCDI without severe adverse events and repeat FMT was significantly associated with CDI cure. Most patients also experienced remission or amelioration of UC activity after FMT. Our findings suggest that a sequential FMT protocol may be used routinely in patients with UC and rCDI.


Asunto(s)
Clostridioides difficile , Infecciones por Clostridium , Colitis Ulcerosa , Enfermedades Inflamatorias del Intestino , Humanos , Trasplante de Microbiota Fecal/efectos adversos , Colitis Ulcerosa/terapia , Estudios Retrospectivos , Estudios de Cohortes , Recurrencia , Infecciones por Clostridium/complicaciones , Infecciones por Clostridium/tratamiento farmacológico , Enfermedades Inflamatorias del Intestino/etiología , Resultado del Tratamiento
6.
Materials (Basel) ; 12(21)2019 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-31652698

RESUMEN

This paper reports on the electrical activation and Ohmic contact properties on p-type Al-implanted silicon carbide (4H-SiC). In particular, the contacts were formed on 4H-SiC-implanted layers, subjected to three different post-implantation annealing processes, at 1675 °C, 1175 °C, and 1825 °C. Under these post-implantation annealing conditions, the electrical activation of the Al dopant species increased from 39% to 56%. The Ti/Al/Ni contacts showed an Ohmic behavior after annealing at 950 °C. The specific contact resistance ρc could be lowered by a factor of 2.6 with the increase of the post-implantation annealing temperature. The result can be useful for application in device fabrication. Moreover, the dependence of ρc on the active acceptor concentration followed the thermionic field emission model, with a barrier height of 0.63 eV.

7.
ACS Appl Mater Interfaces ; 9(40): 35383-35390, 2017 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-28920438

RESUMEN

In this work, the conduction mechanisms at the interface of AlN/SiN dielectric stacks with AlGaN/GaN heterostructures have been studied combining different macroscopic and nanoscale characterizations on bare materials and devices. The AlN/SiN stacks grown on the recessed region of AlGaN/GaN heterostructures have been used as gate dielectric of hybrid metal-insulator-semiconductor high electron mobility transistors (MISHEMTs), showing a normally-off behavior (Vth = +1.2 V), high channel mobility (204 cm2 V-1 s-1), and very good switching behavior (ION/IOFF current ratio of (5-6) × 108 and subthreshold swing of 90 mV/dec). However, the transistors were found to suffer from a positive shift of the threshold voltage during subsequent bias sweeps, which indicates electron trapping in the dielectric stack. To get a complete understanding of the conduction mechanisms and of the charge trapping phenomena in AlN/SiN films, nanoscale current and capacitance measurements by conductive atomic force microscopy (C-AFM) and scanning capacitance microscopy (SCM) have been compared with a macroscopic temperature-dependent characterization of gate current in MIS capacitors. The nanoscale electrical analyses showed the presence of a spatially uniform distribution of electrons trapping states in the insulator and the occurrence of a density of 7 × 108 cm-2 of local and isolated current spots at high bias values. These nanoscale conductive paths can be associated with electrically active defects responsible for the trap-assisted current transport mechanism through the dielectric, observed by the temperature-dependent characterization of the gate current. The results of this study can be relevant for future applications of AlN/SiN bilayers in GaN hybrid MISHEMT technology.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...