Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 13(1): 3526, 2022 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-35725571

RESUMEN

Recognition of promoters in bacterial RNA polymerases (RNAPs) is controlled by sigma subunits. The key sequence motif recognized by the sigma, the -10 promoter element, is located in the non-template strand of the double-stranded DNA molecule ~10 nucleotides upstream of the transcription start site. Here, we explain the mechanism by which the phage AR9 non-virion RNAP (nvRNAP), a bacterial RNAP homolog, recognizes the -10 element of its deoxyuridine-containing promoter in the template strand. The AR9 sigma-like subunit, the nvRNAP enzyme core, and the template strand together form two nucleotide base-accepting pockets whose shapes dictate the requirement for the conserved deoxyuridines. A single amino acid substitution in the AR9 sigma-like subunit allows one of these pockets to accept a thymine thus expanding the promoter consensus. Our work demonstrates the extent to which viruses can evolve host-derived multisubunit enzymes to make transcription of their own genes independent of the host.


Asunto(s)
ARN Viral , Proteinas del Complejo de Replicasa Viral , ARN Polimerasas Dirigidas por ADN/metabolismo , Desoxiuridina , Regiones Promotoras Genéticas/genética , Factor sigma/metabolismo , Transcripción Genética
2.
Nucleic Acids Res ; 50(2): e11, 2022 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-34791389

RESUMEN

The choice of guide RNA (gRNA) for CRISPR-based gene targeting is an essential step in gene editing applications, but the prediction of gRNA specificity remains challenging. Lack of transparency and focus on point estimates of efficiency disregarding the information on possible error sources in the model limit the power of existing Deep Learning-based methods. To overcome these problems, we present a new approach, a hybrid of Capsule Networks and Gaussian Processes. Our method predicts the cleavage efficiency of a gRNA with a corresponding confidence interval, which allows the user to incorporate information regarding possible model errors into the experimental design. We provide the first utilization of uncertainty estimation in computational gRNA design, which is a critical step toward accurate decision-making for future CRISPR applications. The proposed solution demonstrates acceptable confidence intervals for most test sets and shows regression quality similar to existing models. We introduce a set of criteria for gRNA selection based on off-target cleavage efficiency and its variance and present a collection of pre-computed gRNAs for human chromosome 22. Using Neural Network Interpretation methods, we show that our model rediscovers an established biological factor underlying cleavage efficiency, the importance of the seed region in gRNA.


Asunto(s)
Sistemas CRISPR-Cas , Aprendizaje Profundo , Edición Génica , Marcación de Gen , ARN Guía de Kinetoplastida/genética , Algoritmos , Edición Génica/métodos , Marcación de Gen/métodos , Genómica/métodos , Humanos , Redes Neurales de la Computación , Reproducibilidad de los Resultados
3.
Biochemistry (Mosc) ; 86(10): 1301-1314, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34903162

RESUMEN

The emergence and persistence of selfish genetic elements is an intrinsic feature of all living systems. Cellular organisms have evolved a plethora of elaborate defense systems that limit the spread of such genetic parasites. CRISPR-Cas are RNA-guided defense systems used by prokaryotes to recognize and destroy foreign nucleic acids. These systems acquire and store fragments of foreign nucleic acids and utilize the stored sequences as guides to recognize and destroy genetic invaders. CRISPR-Cas systems have been extensively studied, as some of them are used in various genome editing technologies. Although Type III CRISPR-Cas systems are among the most common CRISPR-Cas systems, they are also some of the least investigated ones, mostly due to the complexity of their action compared to other CRISPR-Cas system types. Type III effector complexes specifically recognize and cleave RNA molecules. The recognition of the target RNA activates the effector large subunit - the so-called CRISPR polymerase - which cleaves DNA and produces small cyclic oligonucleotides that act as signaling molecules to activate auxiliary effectors, notably non-specific RNases. In this review, we provide a historical overview of the sometimes meandering pathway of the Type III CRISPR research. We also review the current data on the structures and activities of Type III CRISPR-Cas systems components, their biological roles, and evolutionary history. Finally, using structural modeling with AlphaFold2, we show that the archaeal HRAMP signature protein, which heretofore has had no assigned function, is a degenerate relative of Type III CRISPR-Cas signature protein Cas10, suggesting that HRAMP systems have descended from Type III CRISPR-Cas systems or their ancestors.


Asunto(s)
Evolución Biológica , Sistemas CRISPR-Cas/inmunología , Edición Génica/métodos , Células Procariotas/inmunología , Sistemas CRISPR-Cas/genética , Sistema Inmunológico/metabolismo , Células Procariotas/metabolismo , Transducción de Señal
4.
Biochemistry (Mosc) ; 86(4): 449-470, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33941066

RESUMEN

Bacteriophages or phages are viruses that infect bacterial cells (for the scope of this review we will also consider viruses that infect Archaea). The constant threat of phage infection is a major force that shapes evolution of microbial genomes. To withstand infection, bacteria had evolved numerous strategies to avoid recognition by phages or to directly interfere with phage propagation inside the cell. Classical molecular biology and genetic engineering had been deeply intertwined with the study of phages and host defenses. Nowadays, owing to the rise of phage therapy, broad application of CRISPR-Cas technologies, and development of bioinformatics approaches that facilitate discovery of new systems, phage biology experiences a revival. This review describes variety of strategies employed by microbes to counter phage infection. In the first part defense associated with cell surface, roles of small molecules, and innate immunity systems relying on DNA modification were discussed. The second part focuses on adaptive immunity systems, abortive infection mechanisms, defenses associated with mobile genetic elements, and novel systems discovered in recent years through metagenomic mining.


Asunto(s)
Archaea/virología , Bacterias/virología , Bacteriófagos/fisiología , Sistemas CRISPR-Cas , Interacciones Huésped-Patógeno , Archaea/genética , Archaea/fisiología , Bacterias/genética , Fenómenos Fisiológicos Bacterianos
5.
Biochemistry (Mosc) ; 86(3): 319-337, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33838632

RESUMEN

Bacteriophages or phages are viruses that infect bacterial cells (for the scope of this review we will also consider viruses that infect Archaea). Constant threat of phage infection is a major force that shapes evolution of the microbial genomes. To withstand infection, bacteria had evolved numerous strategies to avoid recognition by phages or to directly interfere with phage propagation inside the cell. Classical molecular biology and genetic engineering have been deeply intertwined with the study of phages and host defenses. Nowadays, owing to the rise of phage therapy, broad application of CRISPR-Cas technologies, and development of bioinformatics approaches that facilitate discovery of new systems, phage biology experiences a revival. This review describes variety of strategies employed by microbes to counter phage infection, with a focus on novel systems discovered in recent years. First chapter covers defense associated with cell surface, role of small molecules, and innate immunity systems relying on DNA modification.


Asunto(s)
Archaea/virología , Bacterias/virología , Bacteriófagos , Archaea/genética , Archaea/metabolismo , Archaea/fisiología , Bacterias/genética , Bacterias/metabolismo , Fenómenos Fisiológicos Bacterianos , Sistemas CRISPR-Cas , Interacciones Microbiota-Huesped
6.
Nature ; 589(7841): 306-309, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33208949

RESUMEN

CrAss-like phages are a recently described expansive group of viruses that includes the most abundant virus in the human gut1-3. The genomes of all crAss-like phages encode a large virion-packaged protein2,4 that contains a DFDxD sequence motif, which forms the catalytic site in cellular multisubunit RNA polymerases (RNAPs)5. Here, using Cellulophaga baltica crAss-like phage phi14:2 as a model system, we show that this protein is a DNA-dependent RNAP that is translocated into the host cell along with the phage DNA and transcribes early phage genes. We determined the crystal structure of this 2,180-residue enzyme in a self-inhibited state, which probably occurs before virion packaging. This conformation is attained with the help of a cleft-blocking domain that interacts with the active site and occupies the cavity in which the RNA-DNA hybrid binds. Structurally, phi14:2 RNAP is most similar to eukaryotic RNAPs that are involved in RNA interference6,7, although most of the phi14:2 RNAP structure (nearly 1,600 residues) maps to a new region of the protein fold space. Considering this structural similarity, we propose that eukaryal RNA interference polymerases have their origins in phage, which parallels the emergence of the mitochondrial transcription apparatus8.


Asunto(s)
Bacteriófagos/clasificación , Bacteriófagos/enzimología , ARN Polimerasas Dirigidas por ADN/química , ARN Polimerasas Dirigidas por ADN/metabolismo , Flavobacteriaceae/virología , Bacteriófagos/genética , Dominio Catalítico , Sistema Libre de Células , Cristalografía por Rayos X , ADN de Cadena Simple/biosíntesis , ADN de Cadena Simple/genética , ARN Polimerasas Dirigidas por ADN/genética , Evolución Molecular , Regulación Viral de la Expresión Génica , Genes Virales/genética , Modelos Biológicos , Modelos Moleculares , Dominios Proteicos , Subunidades de Proteína/química , Subunidades de Proteína/metabolismo , Interferencia de ARN , Transcripción Genética
7.
CRISPR J ; 3(6): 535-549, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33346707

RESUMEN

CRISPR-Cas systems typically consist of a CRISPR array and cas genes that are organized in one or more operons. However, a substantial fraction of CRISPR arrays are not adjacent to cas genes. Definitive identification of such isolated CRISPR arrays runs into the problem of false-positives, with unrelated types of repetitive sequences mimicking CRISPR. We developed a computational pipeline to eliminate false CRISPR predictions and found that up to 25% of the CRISPR arrays in complete bacterial and archaeal genomes are located away from cas genes. Most of the repeats in these isolated arrays are identical to repeats in cas-adjacent CRISPR arrays in the same or closely related genomes, indicating an evolutionary relationship between isolated arrays and arrays in typical CRISPR-cas loci. The spacers in isolated CRISPR arrays show nearly as many matches to viral genomes as spacers from complete CRISPR-cas loci, suggesting that the isolated arrays were either functionally active recently or continue to function. Reconstruction of evolutionary events in closely related bacterial genomes suggests three routes of evolution of isolated CRISPR arrays: (1) loss of cas genes in a CRISPR-cas locus, (2) de novo generation of arrays from off-target spacer integration into sequences resembling the corresponding repeats, and (3) transfer by mobile genetic elements. Both combination of de novo emerging arrays with cas genes and regain of cas genes by isolated arrays via recombination likely contribute to functional diversification in CRISPR-Cas evolution.


Asunto(s)
Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas/genética , Biología Computacional/métodos , Edición Génica/métodos , Bacterias/genética , Proteínas Asociadas a CRISPR/genética , Sistemas CRISPR-Cas/genética , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas/fisiología , Genoma Arqueal/genética , Genoma Bacteriano/genética , Genoma Viral/genética , Genómica/métodos , Filogenia
8.
Proc Natl Acad Sci U S A ; 117(44): 27300-27306, 2020 11 03.
Artículo en Inglés | MEDLINE | ID: mdl-33087570

RESUMEN

Conventional "bulk" PCR often yields inefficient and nonuniform amplification of complex templates in DNA libraries, introducing unwanted biases. Amplification of single DNA molecules encapsulated in a myriad of emulsion droplets (emulsion PCR, ePCR) allows the mitigation of this problem. Different ePCR regimes were experimentally analyzed to identify the most robust techniques for enhanced amplification of DNA libraries. A phenomenological mathematical model that forms an essential basis for optimal use of ePCR for library amplification was developed. A detailed description by high-throughput sequencing of amplified DNA-encoded libraries highlights the principal advantages of ePCR over bulk PCR. ePCR outperforms PCR, reduces gross DNA errors, and provides a more uniform distribution of the amplified sequences. The quasi single-molecule amplification achieved via ePCR represents the fundamental requirement in case of complex DNA templates being prone to diversity degeneration and provides a way to preserve the quality of DNA libraries.


Asunto(s)
Emulsiones/química , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Reacción en Cadena de la Polimerasa/métodos , ADN/genética , Cartilla de ADN/genética , Biblioteca de Genes , Genoma/genética , Humanos , Modelos Teóricos , Técnicas de Amplificación de Ácido Nucleico/métodos , Moldes Genéticos
9.
Commun Biol ; 3(1): 321, 2020 06 22.
Artículo en Inglés | MEDLINE | ID: mdl-32572116

RESUMEN

CRISPR arrays contain spacers, some of which are homologous to genome segments of viruses and other parasitic genetic elements and are employed as portion of guide RNAs to recognize and specifically inactivate the target genomes. However, the fraction of the spacers in sequenced CRISPR arrays that reliably match protospacer sequences in genomic databases is small, leaving the question of the origin(s) open for the great majority of the spacers. Here, we extend the spacer analysis by examining the distribution of partial matches (matching k-mers) between spacers and genomes of viruses infecting the given host as well as the host genomes themselves. The results indicate that most of the spacers originate from the host-specific viromes, whereas self-targeting is strongly selected against. However, we present evidence that the vast majority of the viruses comprising the viromes currently remain unknown although they are likely to be related to identified viruses.


Asunto(s)
Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Células Procariotas/virología , Viroma/genética , Adaptación Biológica/genética , Bacterias/genética , Bacterias/virología , Escherichia coli/genética , Escherichia coli/virología , Genoma , Interacciones Huésped-Patógeno/genética , Provirus/genética
10.
Nat Protoc ; 14(10): 3013-3031, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31520072

RESUMEN

Functionally linked genes in bacterial and archaeal genomes are often organized into operons. However, the composition and architecture of operons are highly variable and frequently differ even among closely related genomes. Therefore, to efficiently extract reliable functional predictions for uncharacterized genes from comparative analyses of the rapidly growing genomic databases, dedicated computational approaches are required. We developed a protocol to systematically and automatically identify genes that are likely to be functionally associated with a 'bait' gene or locus by using relevance metrics. Given a set of bait loci and a genomic database defined by the user, this protocol compares the genomic neighborhoods of the baits to identify genes that are likely to be functionally linked to the baits by calculating the abundance of a given gene within and outside the bait neighborhoods and the distance to the bait. We exemplify the performance of the protocol with three test cases, namely, genes linked to CRISPR-Cas systems using the 'CRISPRicity' metric, genes associated with archaeal proviruses and genes linked to Argonaute genes in halobacteria. The protocol can be run by users with basic computational skills. The computational cost depends on the sizes of the genomic dataset and the list of reference loci and can vary from one CPU-hour to hundreds of hours on a supercomputer.


Asunto(s)
Biología Computacional/métodos , Genes Arqueales , Genes Bacterianos , Genómica/métodos , Sistemas CRISPR-Cas , Genoma Arqueal , Genoma Bacteriano , Anotación de Secuencia Molecular/métodos , Sistemas de Lectura Abierta , Operón
11.
Proc Natl Acad Sci U S A ; 115(38): 9551-9556, 2018 09 18.
Artículo en Inglés | MEDLINE | ID: mdl-30181282

RESUMEN

Microbiome spectra serve as critical clues to elucidate the evolutionary biology pathways, potential pathologies, and even behavioral patterns of the host organisms. Furthermore, exotic sources of microbiota represent an unexplored niche to discover microbial secondary metabolites. However, establishing the bacterial functionality is complicated by an intricate web of interactions inside the microbiome. Here we apply an ultrahigh-throughput (uHT) microfluidic droplet platform for activity profiling of the entire oral microbial community of the Siberian bear to isolate Bacillus strains demonstrating antimicrobial activity against Staphylococcus aureus Genome mining allowed us to identify antibiotic amicoumacin A (Ami) as responsible for inhibiting the growth of S. aureus Proteomics and metabolomics revealed a unique mechanism of Bacillus self-resistance to Ami, based on a subtle equilibrium of its deactivation and activation by kinase AmiN and phosphatase AmiO, respectively. We developed uHT quantitative single-cell analysis to estimate antibiotic efficacy toward different microbiomes and used it to determine the activity spectra of Ami toward human and Siberian bear microbiota. Thus, uHT microfluidic droplet platform activity profiling is a powerful tool for discovering antibiotics and quantifying external influences on a microbiome.


Asunto(s)
Antibacterianos/farmacología , Cumarinas/farmacología , Microbioma Gastrointestinal/efectos de los fármacos , Ensayos Analíticos de Alto Rendimiento/métodos , Metabolómica/métodos , Animales , Antibacterianos/metabolismo , Bacillus pumilus/efectos de los fármacos , Bacillus pumilus/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Cumarinas/metabolismo , ADN Bacteriano/genética , ADN Bacteriano/aislamiento & purificación , Farmacorresistencia Bacteriana/fisiología , Microbioma Gastrointestinal/fisiología , Perfilación de la Expresión Génica , Voluntarios Sanos , Humanos , Dispositivos Laboratorio en un Chip , Proteómica/métodos , Análisis de Secuencia de ADN , Homología de Secuencia de Ácido Nucleico , Análisis de la Célula Individual/métodos , Staphylococcus aureus/efectos de los fármacos , Staphylococcus aureus/fisiología , Ursidae/microbiología
12.
Proc Natl Acad Sci U S A ; 115(23): E5307-E5316, 2018 06 05.
Artículo en Inglés | MEDLINE | ID: mdl-29784811

RESUMEN

The CRISPR-Cas systems of bacterial and archaeal adaptive immunity consist of direct repeat arrays separated by unique spacers and multiple CRISPR-associated (cas) genes encoding proteins that mediate all stages of the CRISPR response. In addition to the relatively small set of core cas genes that are typically present in all CRISPR-Cas systems of a given (sub)type and are essential for the defense function, numerous genes occur in CRISPR-cas loci only sporadically. Some of these have been shown to perform various ancillary roles in CRISPR response, but the functional relevance of most remains unknown. We developed a computational strategy for systematically detecting genes that are likely to be functionally linked to CRISPR-Cas. The approach is based on a "CRISPRicity" metric that measures the strength of CRISPR association for all protein-coding genes from sequenced bacterial and archaeal genomes. Uncharacterized genes with CRISPRicity values comparable to those of cas genes are considered candidate CRISPR-linked genes. We describe additional criteria to predict functionally relevance for genes in the candidate set and identify 79 genes as strong candidates for functional association with CRISPR-Cas systems. A substantial majority of these CRISPR-linked genes reside in type III CRISPR-cas loci, which implies exceptional functional versatility of type III systems. Numerous candidate CRISPR-linked genes encode integral membrane proteins suggestive of tight membrane association of CRISPR-Cas systems, whereas many others encode proteins implicated in various signal transduction pathways. These predictions provide ample material for improving annotation of CRISPR-cas loci and experimental characterization of previously unsuspected aspects of CRISPR-Cas system functionality.


Asunto(s)
Sistemas CRISPR-Cas/genética , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas/genética , Archaea/genética , Bacterias/genética , Secuencia de Bases , Proteínas Asociadas a CRISPR/genética , Simulación por Computador , Evolución Molecular , Genes Bacterianos , Pruebas Genéticas , Genoma Arqueal , Genoma Bacteriano , Filogenia
13.
mBio ; 8(5)2017 09 19.
Artículo en Inglés | MEDLINE | ID: mdl-28928211

RESUMEN

Clustered regularly interspaced short palindromic repeats and CRISPR-associated protein (CRISPR-Cas) systems store the memory of past encounters with foreign DNA in unique spacers that are inserted between direct repeats in CRISPR arrays. For only a small fraction of the spacers, homologous sequences, called protospacers, are detectable in viral, plasmid, and microbial genomes. The rest of the spacers remain the CRISPR "dark matter." We performed a comprehensive analysis of the spacers from all CRISPR-cas loci identified in bacterial and archaeal genomes, and we found that, depending on the CRISPR-Cas subtype and the prokaryotic phylum, protospacers were detectable for 1% to about 19% of the spacers (~7% global average). Among the detected protospacers, the majority, typically 80 to 90%, originated from viral genomes, including proviruses, and among the rest, the most common source was genes that are integrated into microbial chromosomes but are involved in plasmid conjugation or replication. Thus, almost all spacers with identifiable protospacers target mobile genetic elements (MGE). The GC content, as well as dinucleotide and tetranucleotide compositions, of microbial genomes, their spacer complements, and the cognate viral genomes showed a nearly perfect correlation and were almost identical. Given the near absence of self-targeting spacers, these findings are most compatible with the possibility that the spacers, including the dark matter, are derived almost completely from the species-specific microbial mobilomes.IMPORTANCE The principal function of CRISPR-Cas systems is thought to be protection of bacteria and archaea against viruses and other parasitic genetic elements. The CRISPR defense function is mediated by sequences from parasitic elements, known as spacers, that are inserted into CRISPR arrays and then transcribed and employed as guides to identify and inactivate the cognate parasitic genomes. However, only a small fraction of the CRISPR spacers match any sequences in the current databases, and of these, only a minority correspond to known parasitic elements. We show that nearly all spacers with matches originate from viral or plasmid genomes that are either free or have been integrated into the host genome. We further demonstrate that spacers with no matches have the same properties as those of identifiable origins, strongly suggesting that all spacers originate from mobile elements.


Asunto(s)
Proteínas Asociadas a CRISPR/genética , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Genoma Arqueal , Genoma Bacteriano , Plásmidos , Archaea/genética , Bacterias/genética , Sistemas CRISPR-Cas , Genoma Viral , Oligonucleótidos/química , Oligonucleótidos/genética , Análisis de Secuencia de ADN
14.
Viruses ; 9(7)2017 07 17.
Artículo en Inglés | MEDLINE | ID: mdl-28714913

RESUMEN

Acinetobacter baumannii is a gram-negative, non-fermenting aerobic bacterium which is often associated with hospital-acquired infections and known for its ability to develop resistance to antibiotics, form biofilms, and survive for long periods in hospital environments. In this study, we present two novel viruses, vB_AbaP_AS11 and vB_AbaP_AS12, specifically infecting and lysing distinct multidrug-resistant clinical A. baumannii strains with K19 and K27 capsular polysaccharide structures, respectively. Both phages demonstrate rapid adsorption, short latent periods, and high burst sizes in one-step growth experiments. The AS11 and AS12 linear double-stranded DNA genomes of 41,642 base pairs (bp) and 41,402 bp share 86.3% nucleotide sequence identity with the most variable regions falling in host receptor-recognition genes. These genes encode tail spikes possessing depolymerizing activities towards corresponding capsular polysaccharides which are the primary bacterial receptors. We described AS11 and AS12 genome organization and discuss the possible regulation of transcription. The overall genomic architecture and gene homology analyses showed that the phages are new representatives of the recently designated Fri1virus genus of the Autographivirinae subfamily within the Podoviridae family.


Asunto(s)
Acinetobacter baumannii/virología , Podoviridae/aislamiento & purificación , Podoviridae/fisiología , Infecciones por Acinetobacter/microbiología , Acinetobacter baumannii/efectos de los fármacos , Acinetobacter baumannii/inmunología , Antibacterianos/farmacología , ADN Viral/genética , ARN Polimerasas Dirigidas por ADN/metabolismo , Farmacorresistencia Bacteriana Múltiple , Genoma Viral , Especificidad del Huésped , Humanos , Filogenia , Podoviridae/genética , Polisacáridos Bacterianos/análisis , Proteínas Virales/genética
15.
PLoS One ; 10(12): e0144940, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26670620

RESUMEN

Factor XIIa (fXIIa) is a serine protease that triggers the coagulation contact pathway and plays a role in thrombosis. Because it interferes with coagulation testing, the need to inhibit fXIIa exists in many cases. Infestin-4 (Inf4) is a Kazal-type inhibitor of fXIIa. Its specificity for fXIIa can be enhanced by point mutations in the protease-binding loop. We attempted to adapt Inf4 for the selective repression of the contact pathway under various in vitro conditions, e.g., during blood collection and in 'global' assays of tissue factor (TF)-dependent coagulation. First, we designed a set of new Inf4 mutants that, in contrast to wt-Inf4, had stabilized canonical conformations during molecular dynamics simulation. Off-target activities against factor Xa (fXa), plasmin, and other coagulation proteases were either reduced or eliminated in these recombinant mutants, as demonstrated by chromogenic assays. Interactions with fXIIa and fXa were also analyzed using protein-protein docking. Next, Mutant B, one of the most potent mutants (its Ki for fXIIa is 0.7 nM) was tested in plasma. At concentrations 5-20 µM, this mutant delayed the contact-activated generation of thrombin, as well as clotting in thromboelastography and thrombodynamics assays. In these assays, Mutant B did not affect coagulation initiated by TF, thus demonstrating sufficient selectivity and its potential practical significance as a reagent for coagulation diagnostics.


Asunto(s)
Factor XIIa/antagonistas & inhibidores , Proteínas de Insectos/farmacología , Proteínas Mutantes/farmacología , Secuencia de Aminoácidos , Coagulación Sanguínea/efectos de los fármacos , Diseño de Fármacos , Factor XIIa/metabolismo , Factor Xa/metabolismo , Humanos , Proteínas de Insectos/química , Proteínas de Insectos/genética , Cinética , Datos de Secuencia Molecular , Proteínas de Plantas/farmacología , Inhibidores de Proteasas/farmacología , Unión Proteica/efectos de los fármacos , Especificidad por Sustrato , Tiorredoxinas/metabolismo
16.
Nucleic Acids Res ; 42(3): 1619-27, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24234452

RESUMEN

Maintenance of nucleosomal structure in the cell nuclei is essential for cell viability, regulation of gene expression and normal aging. Our previous data identified a key intermediate (a small intranucleosomal DNA loop, Ø-loop) that is likely required for nucleosome survival during transcription by RNA polymerase II (Pol II) through chromatin, and suggested that strong nucleosomal pausing guarantees efficient nucleosome survival. To evaluate these predictions, we analysed transcription through a nucleosome by different, structurally related RNA polymerases and mutant yeast Pol II having different histone-interacting surfaces that presumably stabilize the Ø-loop. The height of the nucleosomal barrier to transcription and efficiency of nucleosome survival correlate with the net negative charges of the histone-interacting surfaces. Molecular modeling and analysis of Pol II-nucleosome intermediates by DNase I footprinting suggest that efficient Ø-loop formation and nucleosome survival are mediated by electrostatic interactions between the largest subunit of Pol II and core histones.


Asunto(s)
Nucleosomas/química , ARN Polimerasa II/química , Transcripción Genética , Histonas/química , Modelos Moleculares , Nucleosomas/metabolismo , ARN Polimerasa II/metabolismo , Electricidad Estática , Thermus/enzimología , Thermus thermophilus/enzimología , Elongación de la Transcripción Genética
17.
J Theor Biol ; 266(4): 550-9, 2010 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-20633563

RESUMEN

The success of a phage that infects a bacterial cell possessing a restriction-modification (R-M) system depends on the activities of the host methyltransferase and restriction endonuclease, and the number of susceptible sites in the phage genome. However, there is no model describing this dependency and linking it to observable parameters such as the fraction of surviving cells under excess phage, or probability of plating at low amount of phages. We model the phage infection of a cell with a R-M system as a pure birth process with a killing state. We calculate the transitional probabilities and the stationary distribution for this process. We generalize the model developed for a single cell to the case of multiple identical cells invaded by a Poisson-distributed number of phages. The R-M enzyme activities are assumed to be constant, time-dependent, or random. The obtained results are used to estimate the ratio of the methyltransferase and endonuclease activities from the observed fraction of surviving cells.


Asunto(s)
Bacterias/enzimología , Bacterias/virología , Bacteriófagos/fisiología , Enzimas de Restricción-Modificación del ADN/metabolismo , Bacterias/citología , Viabilidad Microbiana , Modelos Biológicos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...