Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Environ Manage ; 368: 122141, 2024 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-39128345

RESUMEN

Microalgae have emerged as a promising source of biomass to produce renewable biofuels due to their ability to synthesize high-energy density compounds of commercial interest. This study proposes an approach for pilot-scale oil extraction, purification by fractional distillation, hydrocarbon characterization by gas chromatography coupled to mass spectrometry (GC-MS), evaluation of physicochemical parameters of the produced hydrocarbons, preliminary cost analysis, and challenges and future opportunities for green diesel on a commercial scale. Here, the microalgae Tetradesmus obliquus was cultivated in 12 m³ photobioreactors using biodigested swine waste as a culture medium. The resulting biomass was subjected to drying and harvesting, followed by oil extraction using a hot solvent extraction method, followed by distillation to purify the compounds. Three different extraction and distillation experiments were conducted, each using different solvent combinations. The results obtained revealed that extraction with a solvent blend, composed of hexane and ethanol, provided more significant yields compared to extraction with pure hexane. GC-MS analysis showed the presence of alkanes and alkenes in the oil samples, and the proportion of solvent used in the extraction directly influenced the production of alkanes. Additionally, specific hydrocarbons such as 4-methyl-1-decene, 8-heptadecene, 1-pentadecene, 9-heneicosene, and 2-dodecene were identified. The evaluation of the physicochemical parameters demonstrated that the calorific value of the distilled oil samples is within the range of typical values for petroleum diesel. However, it was observed that the distilled oil samples had higher sulfur content compared to conventional diesel. Regarding the cost analysis, it was found that it varies depending on the experimental conditions. In particular, the process using a solvent mixture of 70% hexane and 30% ethanol proved to be more economical than the others, since it extracted a greater quantity of oil with a lower initial biomass requirement. In summary, this microalgae-derived hydrocarbon production process is promising and offers insights for compound purification and future biofuel applications.

2.
Recent Pat Biotechnol ; 17(4): 296-311, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-35993463

RESUMEN

There is a current tendency towards bioactive natural products that can be used in different areas such as food, pharmaceutical, and biomedical. In the last decades, polysaccharides have attracted increasing interest because of their potent nontoxic effects, therapeutic properties, and diversified range of applications. Polysaccharides are complex and heterogeneous macromolecules constituted of different monosaccharides and, in some cases, of glucuronic acid and sulphate groups. Polysaccharides with biological activity can be derived from plants, animals and microorganisms, especially microalgae. Microalgae are considered one of the most promising sources of these compounds that have already proved to have several important biological properties. In this sense, our objective is to elucidate the use of bioactive polysaccharides from microalgae in biomedical applications, emphasizing the biological activity of these compounds. Furthermore, the microalgal biomass production systems and polysaccharides extraction methods were presented and discussed.


Asunto(s)
Microalgas , Animales , Patentes como Asunto , Polisacáridos/farmacología , Biomasa
3.
World J Microbiol Biotechnol ; 38(9): 150, 2022 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-35776270

RESUMEN

In recent years, the increasing concern about human health well-being has strongly boosted the search for natural alternatives that can be used in different fields, especially in biomedicine. This has put microalgae-based products in evidence since they contain many bioactive compounds, of which polysaccharides are attractive due to the diverse physicochemical properties and new or improved biological roles they play. Polysaccharides from microalgae, specially exopolysaccharides, are critically important for market purposes because they can be used as anti-inflammatory, immunomodulatory, anti-glycemic, antitumor, antioxidant, anticoagulant, antilipidemic, antiviral, antibacterial, and antifungal agents. Therefore, to obtain higher productivity and competitiveness of these naturally available compounds, the cultivation parameters and the extraction/purification processes must be better optimized in order to bring perspectives for the exploitation of products in commercial and clinical practice. In this sense, the objective of the present review is to elucidate the potential biomedical applications of microalgae-derived polysaccharides. A closer look is taken at the main polysaccharides produced by microalgae, methods of extraction, purification and structural determination, biological activities and their applications, and current status.


Asunto(s)
Microalgas , Antioxidantes/farmacología , Humanos , Microalgas/química , Polisacáridos
4.
Bioresour Technol ; 314: 123745, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32652446

RESUMEN

This research evaluated the carbon dioxide capture and use by Scenedesmus obliquus in a photobioreactor under different CO2 loads. Performance indicators, carbon and energy balances, sustainability indicators, and carbon credits on the photobioreactor were assessed. The results expressed that the CO2 loads of 384.9 kg/m3/d (15% CO2) provide the best trade-off for the process. For this condition, maximum biomass productivities of 0.36 kg/m3/d, carbon dioxide conversion rates of 0.44 kgCO2/m3/d, and oxygen release rates of 0.33 kgO2/m3/d were observed, reaching maximum CO2 removal efficiencies of 30.76%. Volatile organic compounds were the major products generated (>80%). However, only <3% was fixed in biomass. From the environmental and economic point of view, the net energy ratio was 3.44, while the potential carbon credit was of 0.04 USD per m3 of culture. Finally, the use of adequate CO2 loads was also proven to be determinant to improve the global performance of the system.


Asunto(s)
Microalgas , Scenedesmus , Biomasa , Dióxido de Carbono , Huella de Carbono , Fotobiorreactores
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA