Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 115(32): E7568-E7577, 2018 08 07.
Artículo en Inglés | MEDLINE | ID: mdl-30038005

RESUMEN

Mosquito blood cells are immune cells that help control infection by vector-borne pathogens. Despite their importance, little is known about mosquito blood cell biology beyond morphological and functional criteria used for their classification. Here, we combined the power of single-cell RNA sequencing, high-content imaging flow cytometry, and single-molecule RNA hybridization to analyze a subset of blood cells of the malaria mosquito Anopheles gambiae By demonstrating that blood cells express nearly half of the mosquito transcriptome, our dataset represents an unprecedented view into their transcriptional program. Analyses of differentially expressed genes identified transcriptional signatures of two cell types and provide insights into the current classification of these cells. We further demonstrate the active transfer of a cellular marker between blood cells that may confound their identification. We propose that cell-to-cell exchange may contribute to cellular diversity and functional plasticity seen across biological systems.


Asunto(s)
Anopheles/genética , Células Sanguíneas/clasificación , Plasticidad de la Célula/genética , Malaria/transmisión , Mosquitos Vectores/genética , Animales , Animales Modificados Genéticamente , Anopheles/inmunología , Células Sanguíneas/inmunología , Comunicación Celular/genética , Conjuntos de Datos como Asunto , Femenino , Genómica/métodos , Mosquitos Vectores/inmunología , ARN/genética , Análisis de Secuencia de ARN/métodos , Análisis de la Célula Individual/métodos , Transcriptoma
2.
Infect Immun ; 82(6): 2553-64, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24686067

RESUMEN

Saliva from arthropod vectors facilitates blood feeding by altering host inflammation. Whether arthropod saliva counters inflammasome signaling, a protein scaffold that regulates the activity of caspase-1 and cleavage of interleukin-1ß (IL-1ß) and IL-18 into mature molecules, remains elusive. In this study, we provide evidence that a tick salivary protein, sialostatin L2, inhibits inflammasome formation during pathogen infection. We show that sialostatin L2 targets caspase-1 activity during host stimulation with the rickettsial agent Anaplasma phagocytophilum. A. phagocytophilum causes macrophage activation and hemophagocytic syndrome features. The effect of sialostatin L2 in macrophages was not due to direct caspase-1 enzymatic inhibition, and it did not rely on nuclear factor κB or cathepsin L signaling. Reactive oxygen species from NADPH oxidase and the Loop2 domain of sialostatin L2 were important for the regulatory process. Altogether, our data expand the knowledge of immunoregulatory pathways of tick salivary proteins and unveil an important finding in inflammasome biology.


Asunto(s)
Anaplasma phagocytophilum/fisiología , Caspasa 1/metabolismo , Ehrlichiosis/microbiología , Cistatinas Salivales/fisiología , Análisis de Varianza , Animales , Células Cultivadas , Citocinas/metabolismo , Modelos Animales de Enfermedad , Ehrlichiosis/metabolismo , Ehrlichiosis/patología , Inflamasomas/metabolismo , Inflamación/fisiopatología , Macrófagos/metabolismo , Macrófagos/microbiología , Ratones , Ratones Endogámicos C57BL , Especies Reactivas de Oxígeno
3.
Curr Opin Insect Sci ; 3: 30-36, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32846668

RESUMEN

Malaria, the human infectious disease caused by Plasmodium parasites, is transmitted by the bite of the mosquito Anopheles gambiae. Mosquitoes actively detect Plasmodium and mount efficient responses that eliminate the majority of invading parasites. Such responses include hemocyte-mediated defenses, activation of the complement-like system, melanization, and immune signaling cascades. This review aims to summarize our current knowledge of the mosquito immune responses to Plasmodium and to highlight the remaining gaps in our understanding of these events.

4.
PLoS One ; 8(10): e78077, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24205097

RESUMEN

Protein regulation by ubiquitin has been extensively described in model organisms. However, characterization of the ubiquitin machinery in disease vectors remains mostly unknown. This fundamental gap in knowledge presents a concern because new therapeutics are needed to control vector-borne diseases, and targeting the ubiquitin machinery as a means for disease intervention has been already adopted in the clinic. In this study, we employed a bioinformatics approach to uncover the ubiquitin-mediated pathway in the genomes of Anopheles gambiae, Aedes aegypti, Culex quinquefasciatus, Ixodes scapularis, Pediculus humanus and Rhodnius prolixus. We observed that (1) disease vectors encode a lower percentage of ubiquitin-related genes when compared to Drosophila melanogaster, Mus musculus and Homo sapiens but not Saccharomyces cerevisiae; (2) overall, there are more proteins categorized as E3 ubiquitin ligases when compared to E2-conjugating or E1-activating enzymes; (3) the ubiquitin machinery within the three mosquito genomes is highly similar; (4) ubiquitin genes are more than doubled in the Chagas disease vector (R. prolixus) when compared to other arthropod vectors; (5) the deer tick I. scapularis and the body louse (P. humanus) genomes carry low numbers of E1-activating enzymes and HECT-type E3 ubiquitin ligases; (6) R. prolixus have low numbers of RING-type E3 ubiquitin ligases; and (7) C. quinquefasciatus present elevated numbers of predicted F-box E3 ubiquitin ligases, JAB and UCH deubiquitinases. Taken together, these findings provide novel opportunities to study the interaction between a pathogen and an arthropod vector.


Asunto(s)
Vectores Artrópodos/metabolismo , Artrópodos/metabolismo , Ubiquitina/metabolismo , Aedes/genética , Aedes/metabolismo , Animales , Anopheles/genética , Anopheles/metabolismo , Vectores Artrópodos/genética , Artrópodos/genética , Biología Computacional , Culex/genética , Culex/metabolismo , Culicidae/genética , Culicidae/metabolismo , Vectores de Enfermedades , Genoma de los Insectos/genética , Ixodes/genética , Ixodes/metabolismo , Pediculus/genética , Pediculus/metabolismo , Rhodnius/genética , Rhodnius/metabolismo , Transducción de Señal/genética , Transducción de Señal/fisiología
5.
Front Microbiol ; 4: 308, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24155744

RESUMEN

Arthropod saliva possesses anti-hemostatic, anesthetic, and anti-inflammatory properties that facilitate feeding and, inadvertently, dissemination of pathogens. Vector-borne diseases caused by these pathogens affect millions of people each year. Many studies address the impact of arthropod salivary proteins on various immunological components. However, whether and how arthropod saliva counters Nod-like (NLR) sensing remains elusive. NLRs are innate immune pattern recognition molecules involved in detecting microbial molecules and danger signals. Nod1/2 signaling results in activation of the nuclear factor-κB and the mitogen-activated protein kinase pathways. Caspase-1 NLRs regulate the inflammasome~- a protein scaffold that governs the maturation of interleukin (IL)-1ß and IL-18. Recently, several vector-borne pathogens have been shown to induce NLR activation in immune cells. Here, we provide a brief overview of NLR signaling and discuss clinically relevant vector-borne pathogens recognized by NLR pathways. We also elaborate on possible anti-inflammatory effects of arthropod saliva on NLR signaling and microbial pathogenesis for the purpose of exchanging research perspectives.

6.
J Infect Dis ; 208(11): 1830-40, 2013 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-23901084

RESUMEN

Ubiquitination is a posttranslational modification that regulates protein degradation and signaling in eukaryotes. Although it is acknowledged that pathogens exploit ubiquitination to infect mammalian cells, it remains unknown how microbes interact with the ubiquitination machinery in medically relevant arthropods. Here, we show that the ubiquitination machinery is present in the tick Ixodes scapularis and demonstrate that the E3 ubiquitin ligase named x-linked inhibitor of apoptosis protein (XIAP) restricts bacterial colonization of this arthropod vector. We provide evidence that xiap silencing significantly increases tick colonization by the bacterium Anaplasma phagocytophilum, the causative agent of human granulocytic anaplasmosis. We also demonstrate that (i) XIAP polyubiquitination is dependent on the really interesting new gene (RING) catalytic domain, (ii) XIAP polyubiquitination occurs via lysine (K)-63 but not K-48 residues, and (iii) XIAP-dependent K-63 polyubiquitination requires zinc for catalysis. Taken together, our data define a role for ubiquitination during bacterial colonization of disease vectors.


Asunto(s)
Anaplasma phagocytophilum/fisiología , Vectores Arácnidos/enzimología , Ehrlichiosis/microbiología , Ixodes/enzimología , Ubiquitina-Proteína Ligasas/metabolismo , Proteína Inhibidora de la Apoptosis Ligada a X/metabolismo , Animales , Vectores Arácnidos/microbiología , Dominio Catalítico , Humanos , Ixodes/microbiología , Interferencia de ARN , Transducción de Señal , Ubiquitina-Proteína Ligasas/genética , Ubiquitinación , Proteína Inhibidora de la Apoptosis Ligada a X/genética
7.
Cell Microbiol ; 15(7): 1070-8, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23433059

RESUMEN

Ubiquitination (ubiquitylation) is a common protein modification that regulates a multitude of processes within the cell. This modification is typically accomplished through the covalent binding of ubiquitin to a lysine residue onto a target protein and is catalysed by the presence of three enzymes: an activating enzyme (E1), ubiquitin-conjugating enzyme (E2) and ubiquitin-protein ligase (E3). In recent years, ubiquitination has risen as a major signalling regulator of immunity and microbial pathogenesis in the mammalian system. Still, little is known about how ubiquitin relates specifically to vector immunology. Here, we provide a brief overview of ubiquitin biochemistry and describe how ubiquitination regulates immune responses in arthropods of medical relevance. We also discuss scientific gaps in the literature and suggest that, similar to mammals, ubiquitin is a major regulator of immunity in medically important arthropods.


Asunto(s)
Mamíferos/inmunología , Procesamiento Proteico-Postraduccional , Enzimas Activadoras de Ubiquitina/metabolismo , Enzimas Ubiquitina-Conjugadoras/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Animales , Artrópodos/inmunología , Humanos , Ubiquitinación
8.
Parasit Vectors ; 5: 229, 2012 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-23050849

RESUMEN

BACKGROUND: Ixodes scapularis saliva enables the transmission of infectious agents to the mammalian host due to its immunomodulatory, anesthetic and anti-coagulant properties. However, how I. scapularis saliva influences host cytokine secretion in the presence of the obligate intracellular rickettsial pathogen Anaplasma phagocytophilum remains elusive. METHODS: Bone marrow derived macrophages (BMDMs) were stimulated with pathogen associated molecular patterns (PAMPs) and A. phagocytophilum. Cytokine secretion was measured in the presence and absence of I. scapularis saliva. Human peripheral blood mononuclear cells (PBMCs) were also stimulated with Tumor Necrosis Factor (TNF)-α in the presence and absence of I. scapularis saliva and interleukin (IL)-8 was measured. RESULTS: I. scapularis saliva inhibits inflammatory cytokine secretion by macrophages during stimulation of Toll-like (TLR) and Nod-like receptor (NLR) signaling pathways. The effect of I. scapularis saliva on immune cells is not restricted to murine macrophages because decreasing levels of interleukin (IL)-8 were observed after TNF-α stimulation of human peripheral blood mononuclear cells. I. scapularis saliva also mitigates pro-inflammatory cytokine response by murine macrophages during challenge with A. phagocytophilum. CONCLUSIONS: These findings suggest that I. scapularis may inhibit inflammatory cytokine secretion during rickettsial transmission at the vector-host interface.


Asunto(s)
Anaplasma phagocytophilum/inmunología , Citocinas/antagonistas & inhibidores , Citocinas/metabolismo , Ixodes/inmunología , Saliva/inmunología , Adulto , Animales , Humanos , Factores Inmunológicos/metabolismo , Leucocitos Mononucleares/efectos de los fármacos , Leucocitos Mononucleares/inmunología , Macrófagos/efectos de los fármacos , Macrófagos/inmunología , Ratones , Ratones Endogámicos C57BL
9.
Infect Immun ; 80(9): 3194-205, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22753375

RESUMEN

Anaplasma phagocytophilum is a tick-borne rickettsial pathogen that provokes an acute inflammatory response during mammalian infection. The illness caused by A. phagocytophilum, human granulocytic anaplasmosis, occurs irrespective of pathogen load and results instead from host-derived immunopathology. Thus, characterizing A. phagocytophilum genes that affect the inflammatory process is critical for understanding disease etiology. By using an A. phagocytophilum Himar1 transposon mutant library, we showed that a single transposon insertion into the A. phagocytophilum dihydrolipoamide dehydrogenase 1 gene (lpda1 [APH_0065]) affects inflammation during infection. A. phagocytophilum lacking lpda1 revealed enlargement of the spleen, increased splenic extramedullary hematopoiesis, and altered clinicopathological abnormalities during mammalian colonization. Furthermore, LPDA1-derived immunopathology was independent of neutrophil infection and correlated with enhanced reactive oxygen species from NADPH oxidase and nuclear factor (NF)-κB signaling in macrophages. Taken together, these findings suggest the presence of different signaling pathways in neutrophils and macrophages during A. phagocytophilum invasion and highlight the importance of LPDA1 as an immunopathological molecule.


Asunto(s)
Anaplasma phagocytophilum/enzimología , Dihidrolipoamida Deshidrogenasa/inmunología , Dihidrolipoamida Deshidrogenasa/metabolismo , Ehrlichiosis/inmunología , Ehrlichiosis/patología , Factores de Virulencia/inmunología , Factores de Virulencia/metabolismo , Adulto , Anaplasma phagocytophilum/inmunología , Anaplasma phagocytophilum/patogenicidad , Animales , Ehrlichiosis/microbiología , Femenino , Eliminación de Gen , Humanos , Macrófagos/inmunología , Macrófagos/microbiología , Ratones , Ratones Endogámicos C57BL , Mutagénesis Insercional , Neutrófilos/inmunología , Neutrófilos/microbiología , Bazo/microbiología , Bazo/patología
10.
Future Microbiol ; 7(6): 719-31, 2012 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-22702526

RESUMEN

Anaplasma phagocytophilum is an obligate intracellular rickettsial pathogen transmitted by ixodid ticks. This bacterium colonizes myeloid and nonmyeloid cells and causes human granulocytic anaplasmosis--an important immunopathological vector-borne disease in the USA, Europe and Asia. Recent studies uncovered novel insights into the mechanisms of A. phagocytophilum pathogenesis and immunity. Here, we provide an overview of the underlying events by which the immune system responds to A. phagocytophilum infection, how this pathogen counteracts host immunity and the contribution of the tick vector for microbial transmission. We also discuss current scientific gaps in the knowledge of A. phagocytophilum biology for the purpose of exchanging research perspectives.


Asunto(s)
Anaplasma phagocytophilum/inmunología , Anaplasma phagocytophilum/patogenicidad , Ehrlichiosis/inmunología , Ehrlichiosis/patología , Animales , Asia , Investigación Biomédica/tendencias , Ehrlichiosis/microbiología , Europa (Continente) , Humanos , Evasión Inmune , Enfermedades por Picaduras de Garrapatas/inmunología , Enfermedades por Picaduras de Garrapatas/microbiología , Enfermedades por Picaduras de Garrapatas/patología , Garrapatas , Estados Unidos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...