Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Bull Environ Contam Toxicol ; 110(1): 40, 2023 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-36627388

RESUMEN

Predictive models were generated to evaluate the degree to which nine metals (Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb, and Zn) were absorbed by the leaves, stems and roots of forage sorghum in growing media comprising soil admixed with poultry manure concentrations of 0, 10, 20, 30 and 40 g/kg. The data revealed that the greatest contents of the majority of the metals were evident in the roots rather than in the stems and leaves. A bioaccumulation factor (BAF) < 1 was calculated for Cr, Fe, Ni, Pb and Zn; BAF values for Co, Cu, Mn and Cd were 3.99, 2.33, 1.44 and 1.40, respectively, i.e., > 1. Translocation factor values were < 1 for all metals with the exception of Co, Cr and Ni, which displayed values of 1.20, 1.67 and 1.35 for the leaves, and 1.12, 1.23 and 1.24, respectively, for the stems. The soil pH had a negative association with metal tissues in plant parts. A positive relationship was observed with respect to plant metal contents, electrical conductivity and organic matter quantity. The designed models exhibited a high standard of data precision; any variations between the predicted and experimentally observed contents for the nine metals in the three plant tissue components were nonsignificant. Thus, it was concluded that the presented predictive models constitute a pragmatic tool to establish the safety from risk to human well-being with respect to growing forage sorghum when cultivating media fortified with poultry manure.


Asunto(s)
Metales Pesados , Contaminantes del Suelo , Sorghum , Animales , Humanos , Suelo/química , Estiércol , Metales Pesados/análisis , Aves de Corral , Cadmio , Plomo , Contaminantes del Suelo/análisis , Monitoreo del Ambiente
2.
Int J Environ Health Res ; 32(1): 106-120, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-32081029

RESUMEN

The current study aims at forming new prediction models to be employed in the approximating the possible uptake of a range of 10 heavy metals (HMs) (Cd, Co, Cr, Cu, Fe, Mn, Mo, Ni, Pb and Zn) by Hordeum vulgare tissues including roots, shoots and grains following its growth in soil amended with sewage sludge (SS) using conditions employed in greenhouses. The present study determined an insignificant difference between the actual and predicted quantities of the HMs in the three tissues using t values. The majority of the predicted quantities of the HMs were acceptable with the exception of Cd in the shoots, Cu in grains and Pb in roots. Consequently, it is possible to use these models in assessing the cultivation of barley plants in soil amended with SS in a safe way, while simultaneously monitoring any potential risks to the health of humans.


Asunto(s)
Hordeum , Metales Pesados , Contaminantes del Suelo , Humanos , Metales Pesados/análisis , Aguas del Alcantarillado , Suelo , Contaminantes del Suelo/análisis
3.
Plants (Basel) ; 10(9)2021 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-34579478

RESUMEN

Plants are frequently exposed to simultaneous abiotic and biotic stresses, a condition that induces complex responses, negatively affects crop productivity and is becoming more exacerbated with current climate change. In this study, we investigated the effects of individual and combined heat and osmotic stresses on Arabidopsis susceptibility to the biotrophic pathogen Pseudomonas syringae pv. tomato (Pst) and the necrotrophic pathogen Botrytiscinerea (Bc). Our data showed that combined abiotic and biotic stresses caused an enhanced negative impact on plant disease resistance in comparison with individual Pst and Bc infections. Pretreating plants with individual heat or combined osmotic-heat stress strongly reduced the expression of many defense genes including pathogenesis-related proteins (PR-1 and PR-5) and the TN-13 gene encoding the TIR-NBS protein, which are involved in disease resistance towards Pst. We also found that combined osmotic-heat stress caused high plant susceptibility to Bc infection and reduced expression of a number of defense genes, including PLANT DEFENSIN 1.3 (PDF1.3), BOTRYTIS SUSCEPTIBLE 1 (BOS1) and THIONIN 2.2 (THI2.2) genes, which are important for disease resistance towards Bc. The impaired disease resistance against both Pst and Bc under combined abiotic stress is associated with reduced expression of cell wall-related genes. Taken together, our data emphasize that the combination of global warming-associated abiotic stresses such as heat and osmotic stresses makes plants more susceptible to pathogen infection, thus threatening future global food security.

4.
Environ Monit Assess ; 193(8): 510, 2021 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-34302207

RESUMEN

Prediction models were developed to estimate the extent to which aluminium, chromium, copper, iron, manganese, nickel, lead, and zinc were absorbed in the grains, leaves, stems, and roots of Sorghum bicolor cultivated in soil with various amendment rate of sewage sludge (0, 10, 20, 30, 40, and 50 g/kg) under greenhouse conditions. It was found that, aside from lead, all the examined metals occurred in significantly higher content in the roots compared to aerial tissues. Furthermore, the r-values were significantly negative between the bioconcentration factors of all metals, apart from aluminium and lead, and soil pH, whereas they were significantly positive between the bioconcentration factors, apart from lead, and soil organic matter content (OM). The r-values were typically significantly positive between the levels of all eight metals in the investigated tissues and in the soil. Moreover, the content of all the eight metals in the tissues exhibited a significant negative r-value with soil pH but a significant positive r-value with soil OM. The eight metal contents in the tissues given by the prediction models were quite similar to the real values, suggesting that the created models performed well, as shown by t-tests. It was thus concluded that prediction models were a viable option for evaluating how safe it was to grow S. bicolor in soils with sewage sludge content and at the same time for keeping track of possible human health hazards.


Asunto(s)
Metales Pesados , Contaminantes del Suelo , Sorghum , Monitoreo del Ambiente , Humanos , Metales Pesados/análisis , Aguas del Alcantarillado/análisis , Suelo , Contaminantes del Suelo/análisis
5.
Plants (Basel) ; 9(10)2020 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-33019617

RESUMEN

The application of sewage sludge (SS) in agriculture is an alternative disposal method for wastewater recycling and soil fertilization. This study evaluated heavy metal bioaccumulation, growth, and yield of Pisum sativum (pea) grown in agricultural soil amended with SS at rates of 0, 10, 20, 30, and 40 g/kg. The results show that root, shoot, pod length, biomass, and number of leaves and pods increased with SS amendments of 10 and 20 g/kg, while rates declined at 30 and 40 g/kg. SS had greater salinity and organic content than the soil. Heavy metals in the postharvest soil samples increased for all SS application rates except Fe and Mo. The significant increase in Cd content started at the lowest amendment rate 10 g/kg; for Co, Mn, and Pb, the significant increase was detected at the highest amendment rate (40 g/kg). Generally, all heavy metals increased significantly in portions of P. sativum except Cd in the shoot. At an amendment rate of 10 g/kg, Co in the shoot and root, Cr in the fruit, Cu in the root, Fe in the fruit, Mn in the shoot and fruit, Mo in the fruit, Pb in the shoot, and Zn in the fruit were elevated significantly. In contrast, the concentrations of Cd in the fruit, Cr in the root, Cu in the shoot, Fe in the shoot and root, Ni in the fruit and root, Pb in the fruit and root, and Zn in the root significantly increased only at the highest rate of 40 g/kg. The highest regression R2 was 0.927 for Mn in pods and the lowest was 0.154 for Cd in shoots. Bioaccumulation and translocation factors were > 1 for Mo and the bioaccumulation of Pb was >1. SS could be used for pea fertilization but only at rates below 20 g/kg to avoid environmental and health hazards.

6.
J Exp Bot ; 71(16): 5098-5112, 2020 08 06.
Artículo en Inglés | MEDLINE | ID: mdl-32442250

RESUMEN

Environmental stresses such as drought, heat, and salinity limit plant development and agricultural productivity. While individual stresses have been studied extensively, much less is known about the molecular interaction of responses to multiple stresses. To address this problem, we investigated molecular responses of Arabidopsis to single, double, and triple combinations of salt, osmotic, and heat stresses. A metabolite profiling analysis indicated the production of specific compatible solutes depending on the nature of the stress applied. We found that in combination with other stresses, heat has a dominant effect on global gene expression and metabolite level patterns. Treatments that include heat stress lead to strongly reduced transcription of genes coding for abundant photosynthetic proteins and proteins regulating the cell life cycle, while genes involved in protein degradation are up-regulated. Under combined stress conditions, the plants shifted their metabolism to a survival state characterized by low productivity. Our work provides molecular evidence for the dangers for plant productivity and future world food security posed by heat waves resulting from global warming. We highlight candidate genes, many of which are functionally uncharacterized, for engineering plant abiotic stress tolerance.


Asunto(s)
Arabidopsis , Regulación de la Expresión Génica de las Plantas , Arabidopsis/genética , Arabidopsis/metabolismo , Sequías , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Salinidad , Estrés Fisiológico
7.
Environ Sci Pollut Res Int ; 27(11): 12138-12151, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-31984462

RESUMEN

The present study estimated the ability of four aquatic macrophytes (Eichhornia crassipes (Mart.) Solms, Ludwigia stolonifera (Guill. & Perr.) P.H. Raven, Echinochloa stagnina (Retz.) P. Beauv. and Phragmites australis (Cav.) Trin. ex Steud.) to accumulate Cd, Ni and Pb and their use for indicating and phytoremediating these metals in contaminated wetlands. Three sites at five locations in the Kitchener Drain in Gharbia and Kafr El-Sheikh Governorates (Egypt) were selected for plant, water and sediment sampling. The water in the Kitchener Drain was polluted with Cd, while Pb and Ni were far below the maximum level of Pb and Ni in the irrigation water. In comparison to the other species, P. australis accumulated the highest concentrations of Cd and Ni, while E. crassipes accumulated the highest concentration of Pb in its tissues. The four species had bioaccumulation factors (BAFs) greater than one, while their translocation factors (TFs) were less than 1 for most heavy metals, except Cd in the leaf and stem of E. stagnina and L. stolonifera, respectively, and Ni in the stem and leaf of E. stagnina. The BAF and TF results indicated that the studied species are suitable for phytostabilizing the studied heavy metals, except Ni in E. stagnina and Cd in L. stolonifera, which are suitable for phytoextracting these metals. Significant positive correlations were found between the investigated heavy metals in the water or sediment and the plant tissues. Their high BAFs, with significant proportional correlations, supported the potential of these species to serve as bioindicators and biomonitors of heavy metals in general and in the investigated metals specifically.


Asunto(s)
Eichhornia , Metales Pesados/análisis , Contaminantes Químicos del Agua/análisis , Biodegradación Ambiental , Egipto
8.
Artículo en Inglés | MEDLINE | ID: mdl-31549921

RESUMEN

The present study aims to develop prediction models for estimating the potential uptake of 10 heavy metals (HMs) (cadmium, Cd; cobalt, Co; chromium, Cr; copper, Cu; iron, Fe; manganese, Mn; molybdenum, Mo; nickel, Ni; lead, Pb; zinc, Zn) by the tissues of Pisum sativum (root, shoot and pod) grown in soil amended with sewage sludge (SS) under greenhouse conditions. Soil organic matter (OM) was estimated by loss-on-ignition at 550 °C for 2 h. The pH was determined by shaking the soil and pure water at a 1:5 ratio. For HM quantifications, 0.5-1.0 g of each soil or plant sample was digested using a tri-acid mixture digestion method. The quantities of selected HMs were estimated by means of inductively coupled plasma optical emission spectrometry. Bio-concentration (BCF) and translocation (TF) factors were <1 for most of the HMs. In addition, simple linear correlations were significantly negative between the BCF of all studied HMs and soil pH, except for Pb, Mn and Ni, whereas significant positive correlations were observed between BCFs and soil OM, except for Mn, Ni and Zn. The accumulation of the 10 HMs in P. sativum tissues was predicted using regression models based on the values of the same HM in the soil as well as its pH and OM. The calculated prediction models performed well for most HMs in P. sativum tissues (except Ni in the pod, Cd in the shoot and Mn in the root). All measured soil factors (HM, pH and OM) consistently contributed to HM concentrations in the three tissues of the studied plants. These models may help to evaluate the safe cultivation of this species in soil amended with SS.


Asunto(s)
Metales Pesados/análisis , Modelos Biológicos , Pisum sativum/crecimiento & desarrollo , Aguas del Alcantarillado/química , Contaminantes del Suelo/análisis , Suelo/química , Bioacumulación , Metales Pesados/metabolismo , Pisum sativum/química , Pisum sativum/metabolismo , Valor Predictivo de las Pruebas , Contaminantes del Suelo/metabolismo
9.
Bull Environ Contam Toxicol ; 104(1): 134-143, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31748864

RESUMEN

This study was carried out to develop mathematical regression equations for predicting the uptake of ten heavy metals (HMs) (cadmium, Cd; cobalt, Co; chromium, Cr; copper, Cu; iron, Fe; manganese, Mn; molybdenum, Mo; nickel, Ni; lead, Pb; zinc, Zn) by a vegetable species (Eruca sativa Mill.) in the Abha region (Saudi Arabia) based on the concentration of these HMs in soils amended with sewage sludge, organic matter (OM) content and soil pH. The resultant regression equations indicated that the three soil factors were significant predictors for the uptake of the ten HMs in the plant tissues. By applying a t test, we found that there are no significant differences between the actual and predicted values of the ten HMs in the E. sativa roots and leaves (P > 0.05), which reflects the goodness of fit of these equations for predicting the uptake of these HMs. Such types of equations may be helpful for evaluating the risk of cultivation of E. sativa plants in soils amended with sewage sludge.


Asunto(s)
Brassicaceae/metabolismo , Metales Pesados/metabolismo , Contaminantes del Suelo/metabolismo , Brassicaceae/química , Cadmio/análisis , Cobre/análisis , Manganeso/análisis , Metales Pesados/análisis , Níquel/análisis , Hojas de la Planta/química , Raíces de Plantas/química , Plantas , Arabia Saudita , Aguas del Alcantarillado/química , Suelo/química , Contaminantes del Suelo/análisis , Verduras , Zinc/análisis
10.
Int J Mol Sci ; 20(13)2019 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-31261879

RESUMEN

Reactive oxygen species (ROS) are highly controlled signaling species that are involved in regulating gene expression in response to different environmental cues. The production of heat shock proteins (HSPs) is a key strategy that plants use to defend themselves against diverse stresses, including oxidative stress. In this study, expression patterns of the Arabidopsis HSP17.4CI gene, a cytosolic class I small HSP, were systematically profiled under different abiotic, biotic and oxidative stresses. Our data show that HSP17.4CI was early and highly induced by heat, cold, salt, drought and high-light. HSP17.4CI also showed high expression levels in Arabidopsis plants infected with the biotrophic pathogen Pseudomonas syringae, but not in response to the necrotrophic pathogens Alternaria brassicicola and Fusarium oxysporum. Oxidative stress treatments including H2O2 and the herbicide methyl viologen led to induction of HSP17.4CI. The plant hormones abscisic acid (ABA) and salicylic acid (SA) induced the expression of HSP17.4CI, whereas methyl jasmonate (MJ) did not affect the expression level of this gene. Furthermore, we found enhanced expression of HSP17.4CI in catalase mutant plants, which are deficient in catalase 2 activity and accumulate intracellular H2O2. Taken together, data presented here suggest that HSP17.4CI expression is regulated by various signals that connect biotic and abiotic stresses with ROS and can be used as a molecular marker for oxidative stress.


Asunto(s)
Proteínas de Arabidopsis/genética , Regulación de la Expresión Génica de las Plantas , Proteínas de Choque Térmico/genética , Estrés Oxidativo , Ácido Abscísico/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Arabidopsis/microbiología , Proteínas de Arabidopsis/metabolismo , Resistencia a la Enfermedad , Fusarium/patogenicidad , Proteínas de Choque Térmico/metabolismo , Pseudomonas syringae/patogenicidad , Especies Reactivas de Oxígeno/metabolismo , Ácido Salicílico/metabolismo
11.
Front Plant Sci ; 7: 187, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26941757

RESUMEN

Current technologies have changed biology into a data-intensive field and significantly increased our understanding of signal transduction pathways in plants. However, global defense signaling networks in plants have not been established yet. Considering the apparent intricate nature of signaling mechanisms in plants (due to their sessile nature), studying the points at which different signaling pathways converge, rather than the branches, represents a good start to unravel global plant signaling networks. In this regard, growing evidence shows that the generation of reactive oxygen species (ROS) is one of the most common plant responses to different stresses, representing a point at which various signaling pathways come together. In this review, the complex nature of plant stress signaling networks will be discussed. An emphasis on different signaling players with a specific attention to ROS as the primary source of the signaling battery in plants will be presented. The interactions between ROS and other signaling components, e.g., calcium, redox homeostasis, membranes, G-proteins, MAPKs, plant hormones, and transcription factors will be assessed. A better understanding of the vital roles ROS are playing in plant signaling would help innovate new strategies to improve plant productivity under the circumstances of the increasing severity of environmental conditions and the high demand of food and energy worldwide.

12.
Mol Plant ; 7(7): 1191-210, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24908268

RESUMEN

Hydrogen peroxide (H2O2) operates as a signaling molecule in eukaryotes, but the specificity of its signaling capacities remains largely unrevealed. Here, we analyzed whether a moderate production of H2O2 from two different plant cellular compartments has divergent effects on the plant transcriptome. Arabidopsis thaliana overexpressing glycolate oxidase in the chloroplast (Fahnenstich et al., 2008; Balazadeh et al., 2012) and plants deficient in peroxisomal catalase (Queval et al., 2007; Inzé et al., 2012) were grown under non-photorespiratory conditions and then transferred to photorespiratory conditions to foster the production of H2O2 in both organelles. We show that H2O2 originating in a specific organelle induces two types of responses: one that integrates signals independently from the subcellular site of H2O2 production and another that is dependent on the H2O2 production site. H2O2 produced in peroxisomes induces transcripts involved in protein repair responses, while H2O2 produced in chloroplasts induces early signaling responses, including transcription factors and biosynthetic genes involved in production of secondary signaling messengers. There is a significant bias towards the induction of genes involved in responses to wounding and pathogen attack by chloroplastic-produced H2O2, including indolic glucosinolates-, camalexin-, and stigmasterol-biosynthetic genes. These transcriptional responses were accompanied by the accumulation of 4-methoxy-indol-3-ylmethyl glucosinolate and stigmasterol.


Asunto(s)
Arabidopsis/citología , Arabidopsis/metabolismo , Cloroplastos/metabolismo , Peróxido de Hidrógeno/metabolismo , Peroxisomas/metabolismo , Transcriptoma , Arabidopsis/efectos de los fármacos , Arabidopsis/genética , Dióxido de Carbono/farmacología , Cloroplastos/efectos de los fármacos , Genoma de Planta/genética , Cinética , Metabolómica , Peroxisomas/efectos de los fármacos , Plantas Modificadas Genéticamente , Estigmasterol/metabolismo , Transcriptoma/efectos de los fármacos , Triptófano/metabolismo
13.
Plant Cell Environ ; 37(9): 2024-35, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24417440

RESUMEN

In natural habitats, especially in arid areas, plants are often simultaneously exposed to multiple abiotic stresses, such as salt, osmotic and heat stresses. However, most analyses of gene expression in stress responses examine individual stresses. In this report, we compare gene expression in individual and combined stresses. We show that combined stress treatments with salt, mannitol and heat induce a unique pattern of gene expression that is not a simple merge of the individual stress responses. Under multiple stress conditions, expression of most heat and salt stress-responsive genes increased to levels similar to or higher than those measured in single stress conditions, but osmotic stress-responsive genes increased to lower levels. Genes up-regulated to higher levels under multiple stress condition than single stress conditions include genes for heat shock proteins, heat shock regulators and late embryogenesis abundant proteins (LEAs), which protect other proteins from damage caused by stresses, suggesting their importance in multiple stress condition. Based on this analysis, we identify candidate genes for engineering crop plants tolerant to multiple stresses.


Asunto(s)
Arabidopsis/genética , Arabidopsis/fisiología , Ambiente , Genoma de Planta/genética , Estrés Fisiológico/genética , Clima Desértico , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Estudios de Asociación Genética , Secuencias Reguladoras de Ácidos Nucleicos/genética , Transcriptoma/genética , Regulación hacia Arriba/genética
14.
PLoS One ; 8(8): e70289, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23940555

RESUMEN

Reactive oxygen species (ROS) are produced in plant cells in response to diverse biotic and abiotic stresses as well as during normal growth and development. Although a large number of transcription factor (TF) genes are up- or down-regulated by ROS, currently very little is known about the functions of these TFs during oxidative stress. In this work, we examined the role of ERF6 (ETHYLENE RESPONSE FACTOR6), an AP2/ERF domain-containing TF, during oxidative stress responses in Arabidopsis. Mutant analyses showed that NADPH oxidase (RbohD) and calcium signaling are required for ROS-responsive expression of ERF6. erf6 insertion mutant plants showed reduced growth and increased H2O2 and anthocyanin levels. Expression analyses of selected ROS-responsive genes during oxidative stress identified several differentially expressed genes in the erf6 mutant. In particular, a number of ROS responsive genes, such as ZAT12, HSFs, WRKYs, MAPKs, RBOHs, DHAR1, APX4, and CAT1 were more strongly induced by H2O2 in erf6 plants than in wild-type. In contrast, MDAR3, CAT3, VTC2 and EX1 showed reduced expression levels in the erf6 mutant. Taken together, our results indicate that ERF6 plays an important role as a positive antioxidant regulator during plant growth and in response to biotic and abiotic stresses.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Factores de Transcripción/metabolismo , Proteínas de Arabidopsis/genética , Catalasa/genética , Catalasa/metabolismo , NADPH Oxidasas/metabolismo , Estrés Oxidativo , Monoéster Fosfórico Hidrolasas/genética , Monoéster Fosfórico Hidrolasas/metabolismo , Factores de Transcripción/genética
15.
Plant J ; 58(1): 69-81, 2009 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-19054360

RESUMEN

Heterotrimeric G proteins are involved in the defense response against necrotrophic fungi in Arabidopsis. In order to elucidate the resistance mechanisms involving heterotrimeric G proteins, we analyzed the effects of the Gß (subunit deficiency in the mutant agb1-2 on pathogenesis-related gene expression, as well as the genetic interaction between agb1-2 and a number of mutants of established defense pathways. Gß-mediated signaling suppresses the induction of salicylic acid (SA)-, jasmonic acid (JA)-, ethylene (ET)- and abscisic acid (ABA)-dependent genes during the initial phase of the infection with Fusarium oxysporum (up to 48 h after inoculation). However, at a later phase it enhances JA/ET-dependent genes such as PDF1.2 and PR4. Quantification of the Fusarium wilt symptoms revealed that Gß- and SA-deficient mutants were more susceptible than wild-type plants, whereas JA- and ET-insensitive and ABA-deficient mutants demonstrated various levels of resistance. Analysis of the double mutants showed that the Gß-mediated resistance to F. oxysporum and Alternaria brassicicola was mostly independent of all of the previously mentioned pathways. However, the progressive decay of agb1-2 mutants was compensated by coi1-21 and jin1-9 mutations, suggesting that at this stage of F. oxysporum infection Gß acts upstream of COI1 and ATMYC2 in JA signaling.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/inmunología , Resistencia a la Enfermedad , Fusarium/patogenicidad , Proteínas de Unión al GTP Heterotriméricas/metabolismo , Ácido Abscísico/genética , Ácido Abscísico/metabolismo , Alternaria/inmunología , Alternaria/patogenicidad , Arabidopsis/genética , Arabidopsis/metabolismo , Arabidopsis/microbiología , Proteínas de Arabidopsis/genética , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/genética , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/metabolismo , Ciclopentanos/metabolismo , Defensinas/genética , Defensinas/metabolismo , Etilenos/metabolismo , Subunidades beta de la Proteína de Unión al GTP/genética , Subunidades beta de la Proteína de Unión al GTP/metabolismo , Genes de Plantas , Proteínas de Unión al GTP Heterotriméricas/genética , Interacciones Huésped-Patógeno , Mutación , Oxilipinas/metabolismo , Enfermedades de las Plantas/inmunología , Enfermedades de las Plantas/microbiología , Hojas de la Planta/genética , Hojas de la Planta/inmunología , Hojas de la Planta/microbiología , Ácido Salicílico/metabolismo , Transducción de Señal , Factores de Tiempo
16.
Plant Cell ; 19(7): 2225-45, 2007 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-17616737

RESUMEN

The Arabidopsis thaliana basic helix-loop-helix Leu zipper transcription factor (TF) MYC2/JIN1 differentially regulates jasmonate (JA)-responsive pathogen defense (e.g., PDF1.2) and wound response (e.g., VSP) genes. In this study, genome-wide transcriptional profiling of wild type and mutant myc2/jin1 plants followed by functional analyses has revealed new roles for MYC2 in the modulation of diverse JA functions. We found that MYC2 negatively regulates Trp and Trp-derived secondary metabolism such as indole glucosinolate biosynthesis during JA signaling. Furthermore, MYC2 positively regulates JA-mediated resistance to insect pests, such as Helicoverpa armigera, and tolerance to oxidative stress, possibly via enhanced ascorbate redox cycling and flavonoid biosynthesis. Analyses of MYC2 cis binding elements and expression of MYC2-regulated genes in T-DNA insertion lines of a subset of MYC2-regulated TFs suggested that MYC2 might modulate JA responses via differential regulation of an intermediate spectrum of TFs with activating or repressing roles in JA signaling. MYC2 also negatively regulates its own expression, and this may be one of the mechanisms used in fine-tuning JA signaling. Overall, these results provide new insights into the function of MYC2 and the transcriptional coordination of the JA signaling pathway.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/metabolismo , Ciclopentanos/metabolismo , Oxilipinas/metabolismo , Animales , Arabidopsis/efectos de los fármacos , Arabidopsis/genética , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Secuencia de Bases , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/química , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/genética , Transporte Biológico/efectos de los fármacos , Ciclopentanos/farmacología , Defensinas/metabolismo , Regulación hacia Abajo/efectos de los fármacos , Flavonoides/biosíntesis , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Genes de Plantas , Glucosinolatos/biosíntesis , Inmunidad Innata/efectos de los fármacos , Ácidos Indolacéticos/metabolismo , Insectos , Datos de Secuencia Molecular , Estrés Oxidativo/efectos de los fármacos , Oxilipinas/farmacología , Enfermedades de las Plantas/inmunología , Enfermedades de las Plantas/parasitología , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/metabolismo , Unión Proteica/efectos de los fármacos , Secuencias Reguladoras de Ácidos Nucleicos/genética , Transducción de Señal/efectos de los fármacos , Transcripción Genética/efectos de los fármacos , Triptófano/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...