Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 89
Filtrar
1.
bioRxiv ; 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38746342

RESUMEN

Reducing malaria transmission has been a major pillar of control programmes and is considered crucial for achieving malaria elimination. Gametocytes, the transmissible forms of the P. falciparum parasite, arise during the blood stage of the parasite and develop through 5 morphologically distinct stages. Immature gametocytes (stage I-IV) sequester and develop in the extravascular niche of the bone marrow and possibly spleen. Only mature stage V gametocytes re-enter peripheral circulation to be taken up by mosquitoes for successful onward transmission. We have recently shown that immature, but not mature gametocytes are targets of host immune responses and identified putative target surface antigens. We hypothesize that these antigens play a role in gametocyte sequestration and contribute to acquired transmission-reducing immunity. Here we demonstrate that surface antigen expression, serum reactivity by human IgG, and opsonic phagocytosis by macrophages all show similar dynamics during gametocyte maturation, i.e., on in immature and off in mature gametocytes. Moreover, the switch in surface reactivity coincides with reversal in phosphatidylserine (PS) surface exposure, a marker for red blood cell age and clearance. PS is exposed on the surface of immature gametocytes (as well as in late asexual stages) but is removed from the surface in later gametocyte stages (IV-V). Using parasite reverse genetics and drug perturbations, we confirm that parasite protein export into the host cell and phospholipid scramblase activity are required for the observed surface modifications in asexual and sexual P. falciparum stages. These findings suggest that the dynamic surface remodelling allows (i) immature gametocyte sequestration in bone marrow and (ii) mature gametocyte release into peripheral circulation and immune evasion, therefore contributing to mature gametocyte survival in vivo and onward transmission to mosquitoes. Importantly, blocking scramblase activity during gametocyte maturation results in efficient clearance of mature gametocytes, revealing a potential path for transmission blocking interventions. Our studies have important implications for our understanding of parasite biology and form a starting point for novel intervention strategies to simultaneously reduce parasite burden and transmission. IMPORTANT: Manuscripts submitted to Review Commons are peer reviewed in a journal-agnostic way.Upon transfer of the peer reviewed preprint to a journal, the referee reports will be available in full to the handling editor.The identity of the referees will NOT be communicated to the authors unless the reviewers choose to sign their report.The identity of the referee will be confidentially disclosed to any affiliate journals to which the manuscript is transferred. GUIDELINES: For reviewers: https://www.reviewcommons.org/reviewers For authors: https://www.reviewcommons.org/authors. CONTACT: The Review Commons office can be contacted directly at: office@reviewcommons.org.

2.
Malar J ; 23(1): 96, 2024 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-38582837

RESUMEN

BACKGROUND: Understanding the dynamics of gametocyte production in polyclonal Plasmodium falciparum infections requires a genotyping method that detects distinct gametocyte clones and estimates their relative frequencies. Here, a marker was identified and evaluated to genotype P. falciparum mature gametocytes using amplicon deep sequencing. METHODS: A data set of polymorphic regions of the P. falciparum genome was mined to identify a gametocyte genotyping marker. To assess marker resolution, the number of unique haplotypes in the marker region was estimated from 95 Malawian P. falciparum whole genome sequences. Specificity of the marker for detection of mature gametocytes was evaluated using reverse transcription-polymerase chain reaction of RNA extracted from NF54 mature gametocytes and rings from a non-gametocyte-producing strain of P. falciparum. Amplicon deep sequencing was performed on experimental mixtures of mature gametocytes from two distinct parasite clones, as well as gametocyte-positive P. falciparum field isolates to evaluate the quantitative ability and determine the limit of detection of the genotyping approach. RESULTS: A 400 bp region of the pfs230 gene was identified as a gametocyte genotyping marker. A larger number of unique haplotypes was observed at the pfs230 marker (34) compared to the sera-2 (18) and ama-1 (14) markers in field isolates from Malawi. RNA and DNA genotyping accurately estimated gametocyte and total parasite clone frequencies when evaluating agreement between expected and observed haplotype frequencies in gametocyte mixtures, with concordance correlation coefficients of 0.97 [95% CI: 0.92-0.99] and 0.92 [95% CI: 0.83-0.97], respectively. The detection limit of the genotyping method for male gametocytes was 0.41 pfmget transcripts/µl [95% CI: 0.28-0.72] and for female gametocytes was 1.98 ccp4 transcripts/µl [95% CI: 1.35-3.68]. CONCLUSIONS: A region of the pfs230 gene was identified as a marker to genotype P. falciparum gametocytes. Amplicon deep sequencing of this marker can be used to estimate the number and relative frequency of parasite clones among mature gametocytes within P. falciparum infections. This gametocyte genotyping marker will be an important tool for studies aimed at understanding dynamics of gametocyte production in polyclonal P. falciparum infections.


Asunto(s)
Malaria Falciparum , Plasmodium falciparum , Masculino , Femenino , Humanos , Plasmodium falciparum/genética , Genotipo , Malaria Falciparum/parasitología , ARN , Secuenciación de Nucleótidos de Alto Rendimiento
3.
PLoS One ; 19(4): e0294823, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38640099

RESUMEN

BACKGROUND: Despite eradication efforts, ~135,000 African children sustained brain injuries as a result of central nervous system (CNS) malaria in 2021. Newer antimalarial medications rapidly clear peripheral parasitemia and improve survival, but mortality remains high with no associated decline in post-malaria neurologic injury. A randomized controlled trial of aggressive antipyretic therapy with acetaminophen and ibuprofen (Fever RCT) for malarial fevers being conducted in Malawi and Zambia began enrollment in 2019. We propose to use neuroimaging in the context of the RCT to further evaluate neuroprotective effects of aggressive antipyretic therapy. METHODS: This observational magnetic resonance imaging (MRI) ancillary study will obtain neuroimaging and neurodevelopmental and behavioral outcomes in children previously enrolled in the Fever RCT at 1- and 12-months post discharge. Analysis will compare the odds of any brain injury between the aggressive antipyretic therapy and usual care groups based upon MRI structural abnormalities. For children unable to undergo imaging without deep sedation, neurodevelopmental and behavioral outcomes will be used to identify brain injury. DISCUSSION: Neuroimaging is a well-established, valid proxy for neurological outcomes after brain injury in pediatric CNS malaria. This MRI ancillary study will add value to the Fever RCT by determining if treatment with aggressive antipyretic therapy is neuroprotective in CNS malaria. It may also help elucidate the underlying mechanism(s) of neuroprotection and expand upon FEVER RCT safety assessments.


Asunto(s)
Antipiréticos , Lesiones Encefálicas , Malaria , Humanos , Niño , Antipiréticos/uso terapéutico , Cuidados Posteriores , Alta del Paciente , Fiebre/complicaciones , Fiebre/tratamiento farmacológico , Fiebre/prevención & control , Imagen por Resonancia Magnética , Ensayos Clínicos Controlados Aleatorios como Asunto , Estudios Observacionales como Asunto
4.
J Clin Invest ; 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38652559

RESUMEN

BACKGROUND: Features of consumptive coagulopathy and thromboinflammation are prominent in cerebral malaria (CM). We hypothesized that thrombogenic autoantibodies contribute to a procoagulant state in CM. METHODS: Plasma from children with uncomplicated malaria (UM, n = 124) and CM (n = 136) was analyzed by ELISA for a panel of 8 autoantibodies including anti-Platelet Factor 4/polyanion (anti-PF4/P), anti-Phospholipid, anti-Phosphatidylserine, anti-Myeloperoxidase, anti-Proteinase 3, anti-dsDNA, anti-Beta-2-Glycoprotein I (ß2GPI), and anti-Cardiolipin. Non-malaria coma (NMC, n = 49) and healthy controls (HC, n = 56) were assayed for comparison. Associations with clinical and immune biomarkers were determined using univariate and logistic regression analyses. RESULTS: Median anti-PF4/P and anti-PS IgG levels were elevated with malaria infection relative to HC (P < 0.001) and NMC (PF4/P: P < 0.001). Anti-PF4/P IgG levels were elevated in CM (median = 0.27, IQR: 0.19-0.41) compared to UM (median = 0.19, IQR: 0.14-0.22, P ≤ 0.0001). Anti-PS IgG levels did not differ between UM and CM (P = 0.39). When CM cases were stratified by malaria retinopathy (Ret) status, levels of anti-PF4/P IgG correlated negatively with peripheral platelet count in Ret+ CM cases (Rs = 0.201, P = 0.04) and associated positively with mortality (OR = 15.2, 95% CI: 1.02-275, P = 0.048). Plasma from CM patients induced a greater platelet activation capacity in an ex-vivo assay relative to plasma from UM patients (P = 0.02). Platelet activation was associated with anti-PF4/P IgG levels (Rs = 0.293, P = 0.035). CONCLUSIONS: Thrombosis mediated by elevated anti-PF4/P autoantibodies may be one mechanism contributing to the clinical complications of CM.

5.
Front Pediatr ; 12: 1295254, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38425660

RESUMEN

Introduction: Mortality in pediatric cerebral malaria (CM) in low- and middle-income countries (LMICs) is associated with brain swelling on magnetic resonance imaging (MRI); however, MRI is unavailable in most LMICs. Optic nerve sheath diameter (ONSD) measurement is an inexpensive method of detecting increased intracranial pressure compared with the invasive opening pressure (OP). Our primary objective was to determine if increased ONSD correlated with brain swelling on MRI in pediatric CM. Our secondary objective was to determine if increased ONSD correlated with increased OP and/or poor neurological outcome in pediatric CM. We hypothesized that increased ONSD would correlate with brain swelling on MRI and increased OP and that ONSD would be higher in survivors with sequelae and non-survivors. Methods: We performed a retrospective chart review of children aged 0-12 years in Blantyre, Malawi, from 2013 to 2022 with CM as defined by the World Health Organization. Brain swelling on admission MRI was characterized by brain volume scores (BVS); severe swelling was scored as 7-8, mild-to-moderate as 4-6, normal as 3. The admission ONSD was measured via ultrasound; it was defined as abnormal if it was >4.5 mm in children >1 year and >4 mm in children <1 year. Favorable outcome was defined as a normal neurological exam on discharge in survivors. The primary and secondary objectives were evaluated using Spearman's correlation; and the demographics were compared using chi-square and the Kruskal-Wallis test (Stata, College Station, TX, USA). Results: Median age of the 207-patients cohort was 50 months [interquartile range (IQR) 35-75]; 49% (n = 102) were female. Of those, 73% (n = 152) had a favorable outcome, and 14% (n = 30) died. Twenty-nine (14%) had a normal BVS, 134 (65%) had mild-to-moderate swelling, and 44 (21%) had severe swelling. ONSD was elevated in 86% (n = 178) of patients, while 12% of patients had increased OP. There was a weakly positive correlation between BVS and ONSD (r = 0.14, p = 0.05). The median ONSD was not significantly different compared by discharge outcome (p = 0.11) or by BVS (p = 0.18). Conclusion: ONSD was not a reliable tool to correlate with BVS, neurological outcome, or OP in children with CM. Future studies to identify alternative methods of early identification of CM patients at highest risk for morbidity and mortality are urgently needed.

6.
Malar J ; 23(1): 28, 2024 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-38243243

RESUMEN

BACKGROUND: In children with cerebral malaria (CM) admission blood lactate has previously guided intravenous fluid therapy and been validated as a prognostic biomarker associated with death. The usefulness of post-admission measurements of blood lactate in children with CM is less clear. The strength of association between blood lactate and neurological sequelae in CM survivors, as well as the optimal duration of post-admission measurements of blood lactate to identify children at higher risk of adverse outcomes is unknown. METHODS: A retrospective cohort study of 1674 Malawian children with CM hospitalized from 2000 to 2018 who had blood lactate measurements every 6 h for the first 24 h after admission was performed. The strength of association between admission lactate or values measured at any time point in the first 24 h post-admission and outcomes (mortality and neurological morbidity in survivors) was estimated. The duration of time after admission that lactate remained a valid prognostic biomarker was assessed. RESULTS: When lactate is analysed as a continuous variable, children with CM who have higher values at admission have a 1.05-fold higher odds (95% CI 0.99-1.11) of death compared to those with lower lactate values. Children with higher blood lactate at 6 h have 1.16-fold higher odds (95% CI 1.09-1.23) of death, compared to those with lower values. If lactate levels are dichotomized into hyperlactataemic (lactate > 5.0 mmol/L) or not, the strength of association between admission lactate and mortality increases (OR = 2.49, 95% CI 1.47-4.22). Blood lactate levels obtained after 18 h post-admission are not associated with outcomes. Similarly, the change in lactate concentrations through time during the first 24 h of hospital admission is not associated with outcomes. Blood lactate during hospitalization is not associated with adverse neurologic outcomes in CM survivors. CONCLUSIONS: In children with CM, blood lactate is associated with death but not neurologic morbidity in survivors. To comprehensively estimate prognosis, blood lactate in children with CM should be assessed at admission and for 18 h afterwards.


Asunto(s)
Malaria Cerebral , Niño , Humanos , Malaria Cerebral/complicaciones , Estudios Retrospectivos , Ácido Láctico , Morbilidad , Biomarcadores , Hospitales
7.
AJNR Am J Neuroradiol ; 45(2): 205-210, 2024 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-38216302

RESUMEN

BACKGROUND AND PURPOSE: Children with cerebral malaria have an elevated risk of mortality and neurologic morbidity. Both mortality and morbidity are associated with initially increased brain volume on MR imaging, as graded by the Brain Volume Score, a subjective ordinal rating scale created specifically for brain MRIs in children with cerebral malaria. For the Brain Volume Score to be more widely clinically useful, we aimed to determine its independent reproducibility and whether it can be applicable to lower-resolution MRIs. MATERIALS AND METHODS: To assess the independent reproducibility of the Brain Volume Score, radiologists not associated with the initial study were trained to score MRIs from a new cohort of patients with cerebral malaria. These scores were then compared with survival and neurologic outcomes. To assess the applicability to lower-resolution MRI, we assigned Brain Volume Scores to brain MRIs degraded to simulate a very-low-field (64 mT) portable scanner and compared these with the original scores assigned to the original nondegraded MRIs. RESULTS: Brain Volume Scores on the new cohort of patients with cerebral malaria were highly associated with outcomes (OR for mortality = 16, P < .001). Scoring of the simulated degraded images remained consistent with the Brain Volume Scores assigned to the original higher-quality (0.35 T) images (intraclass coefficients > 0.86). CONCLUSIONS: Our findings demonstrate that the Brain Volume Score is externally valid in reproducibly predicting outcomes and can be reliably assigned to lower-resolution images.


Asunto(s)
Malaria Cerebral , Humanos , Niño , Malaria Cerebral/diagnóstico por imagen , Reproducibilidad de los Resultados , Imagen por Resonancia Magnética/métodos , Neuroimagen , Encéfalo/diagnóstico por imagen
8.
J Pediatr Intensive Care ; 12(4): 278-288, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37970136

RESUMEN

Cerebral metabolic energy crisis (CMEC), often defined as a cerebrospinal fluid (CSF) lactate: pyruvate ratio (LPR) >40, occurs in various diseases and is associated with poor neurologic outcomes. Cerebral malaria (CM) causes significant mortality and neurodisability in children worldwide. Multiple factors that could lead to CMEC are plausible in these patients, but its frequency has not been explored. Fifty-three children with CM were enrolled and underwent analysis of CSF lactate and pyruvate levels. All 53 patients met criteria for a CMEC (median CSF LPR of 72.9 [interquartile range [IQR]: 58.5-93.3]). Half of children met criteria for an ischemic CMEC (median LPR of 85 [IQR: 73-184]) and half met criteria for a nonischemic CMEC (median LPR of 60 [IQR: 54-79]. Children also underwent transcranial doppler ultrasound investigation. Cerebral blood flow velocities were more likely to meet diagnostic criteria for low flow (<2 standard deviation from normal) or vasospasm in children with an ischemic CMEC (73%) than in children with a nonischemic CMEC (20%, p = 0.04). Children with an ischemic CMEC had poorer outcomes (pediatric cerebral performance category of 3-6) than those with a nonischemic CMEC (46 vs. 22%, p = 0.03). CMEC was ubiquitous in this patient population and the processes underlying the two subtypes (ischemic and nonischemic) may represent targets for future adjunctive therapies.

9.
medRxiv ; 2023 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-37986869

RESUMEN

Background: Despite eradication efforts, ~135,000 African children sustained brain injuries as a result of central nervous system (CNS) malaria in 2021. Newer antimalarial medications rapidly clear peripheral parasitemia and improve survival, but mortality remains high with no associated decline in post-malaria neurologic injury. A randomized controlled trial of aggressive antipyretic therapy with acetaminophen and ibuprofen (Fever RCT) for malarial fevers being conducted in Malawi and Zambia began enrollment in 2019. We propose to use neuroimaging in the context of the RCT to further evaluate neuroprotective effects of aggressive antipyretic therapy. Methods: This observational magnetic resonance imaging (MRI) ancillary study will obtain neuroimaging and neurodevelopmental and behavioral outcomes in children previously enrolled in the Fever RCT at 1- and 12-months post discharge. Analysis will compare the odds of any brain injury between the aggressive antipyretic therapy and usual care groups based upon MRI structural abnormalities. For children unable to undergo imaging without deep sedation, neurodevelopmental and behavioral outcomes will be used to identify brain injury. Discussion: Neuroimaging is a well-established, valid proxy for neurological outcomes after brain injury in pediatric CNS malaria. This MRI ancillary study will add value to the Fever RCT by determining if treatment with aggressive antipyretic therapy is neuroprotective in CNS malaria. It may also help elucidate the underlying mechanism(s) of neuroprotection and expand upon FEVER RCT safety assessments.

10.
Wellcome Open Res ; 8: 172, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37663790

RESUMEN

Cerebral malaria (CM) remains a significant global health challenge with high morbidity and mortality. Malarial retinopathy has been shown to be diagnostically and prognostically significant in the assessment of CM. The major mechanism of death in paediatric CM is brain swelling. Long term morbidity is typically characterised by neurological and neurodevelopmental sequelae. Optical coherence tomography can be used to quantify papilloedema and macular ischaemia, identified as hyperreflectivity. Here we describe a protocol to test the hypotheses that quantification of optic nerve head swelling using optical coherence tomography can identify severe brain swelling in CM, and that quantification of hyperreflectivity in the macula predicts neurodevelopmental outcomes post-recovery. Additionally, our protocol includes the development of a novel, low-cost, handheld optical coherence tomography machine and artificial intelligence tools to assist in image analysis.

12.
Am J Trop Med Hyg ; 108(6): 1151-1156, 2023 06 07.
Artículo en Inglés | MEDLINE | ID: mdl-37068750

RESUMEN

Hypoglycemia, defined as a blood glucose < 2.2 mmol/L, is associated with death in pediatric cerebral malaria (CM). The optimal duration of glucose monitoring in CM is unknown. We collected data from 1,674 hospitalized Malawian children with CM to evaluate the association between hypoglycemia and death or neurologic disability in survivors. We assessed the optimal duration of routine periodic measurements of blood glucose. Children with hypoglycemia at admission had a 2.87-fold higher odds (95% CI: 1.35-6.09) of death and, if they survived, a 3.21-fold greater odds (95% CI: 1.51-6.86) of sequelae at hospital discharge. If hypoglycemia was detected at 6 hours but not at admission, there was a 7.27-fold higher odds of death (95% CI: 1.85-8.56). The presence of newly developed hypoglycemia after admission was not independently associated with neurological sequelae in CM survivors. Among all new episodes of blood sugar below a treatment threshold of 3.0 mmol/L, 94.7% occurred within 24 hours of admission. In those with blood sugar below 3.0 mmol/L in the first 24 hours, low blood sugar persisted or recurred for up to 42 hours. Hypoglycemia at admission or 6 hours afterward is strongly associated with mortality in CM. Children with CM should have 24 hours of post-admission blood glucose measurements. If a blood glucose less than the treatment threshold of 3.0 mmol/L is not detected, routine assessments may cease. Children who have blood sugar values below the treatment threshold detected within the first 24 hours should continue to have periodic glucose measurements for 48 hours post-admission.


Asunto(s)
Hipoglucemia , Malaria Cerebral , Niño , Humanos , Glucemia , Malaria Cerebral/epidemiología , Malaria Cerebral/complicaciones , Automonitorización de la Glucosa Sanguínea , Hospitalización , Progresión de la Enfermedad
13.
Malar J ; 22(1): 125, 2023 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-37060041

RESUMEN

BACKGROUND: Although pro-inflammatory cytokines are involved in the clearance of Plasmodium falciparum during the early stages of the infection, increased levels of these cytokines have been implicated in the pathogenesis of severe malaria. Amongst various parasite-derived inducers of inflammation, the malarial pigment haemozoin (Hz), which accumulates in monocytes, macrophages and other immune cells during infection, has been shown to significantly contribute to dysregulation of the normal inflammatory cascades. METHODS: The direct effect of Hz-loading on cytokine production by monocytes and the indirect effect of Hz on cytokine production by myeloid cells was investigated during acute malaria and convalescence using archived plasma samples from studies investigating P. falciparum malaria pathogenesis in Malawian subjects. Further, the possible inhibitory effect of IL-10 on Hz-loaded cells was examined, and the proportion of cytokine-producing T-cells and monocytes during acute malaria and in convalescence was characterized. RESULTS: Hz contributed towards an increase in the production of inflammatory cytokines, such as Interferon Gamma (IFN-γ), Tumor Necrosis Factor (TNF) and Interleukin 2 (IL-2) by various cells. In contrast, the cytokine IL-10 was observed to have a dose-dependent suppressive effect on the production of TNF among other cytokines. Cerebral malaria (CM) was characterized by impaired monocyte functions, which normalized in convalescence. CM was also characterized by reduced levels of IFN-γ-producing T cell subsets, and reduced expression of immune recognition receptors HLA-DR and CD 86, which also normalized in convalescence. However, CM and other clinical malaria groups were characterized by significantly higher plasma levels of pro-inflammatory cytokines than healthy controls, implicating anti-inflammatory cytokines in balancing the immune response. CONCLUSIONS: Acute CM was characterized by elevated plasma levels of pro-inflammatory cytokines and chemokines but lower proportions of cytokine-producing T-cells and monocytes that normalize during convalescence. IL-10 is also shown to have the potential to indirectly prevent excessive inflammation. Cytokine production dysregulated by the accumulation of Hz appears to impair the balance of the immune response to malaria and exacerbates pathology.


Asunto(s)
Malaria Cerebral , Malaria Falciparum , Humanos , Interleucina-10 , Convalecencia , Citocinas , Factor de Necrosis Tumoral alfa , Interferón gamma , Plasmodium falciparum , Macrófagos/metabolismo , Inflamación
14.
Malar J ; 22(1): 139, 2023 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-37101295

RESUMEN

BACKGROUND: Cerebral malaria (CM) continues to present a major health challenge, particularly in sub-Saharan Africa. CM is associated with a characteristic malarial retinopathy (MR) with diagnostic and prognostic significance. Advances in retinal imaging have allowed researchers to better characterize the changes seen in MR and to make inferences about the pathophysiology of the disease. The study aimed to explore the role of retinal imaging in diagnosis and prognostication in CM; establish insights into pathophysiology of CM from retinal imaging; establish future research directions. METHODS: The literature was systematically reviewed using the African Index Medicus, MEDLINE, Scopus and Web of Science databases. A total of 35 full texts were included in the final analysis. The descriptive nature of the included studies and heterogeneity precluded meta-analysis. RESULTS: Available research clearly shows retinal imaging is useful both as a clinical tool for the assessment of CM and as a scientific instrument to aid the understanding of the condition. Modalities which can be performed at the bedside, such as fundus photography and optical coherence tomography, are best positioned to take advantage of artificial intelligence-assisted image analysis, unlocking the clinical potential of retinal imaging for real-time diagnosis in low-resource environments where extensively trained clinicians may be few in number, and for guiding adjunctive therapies as they develop. CONCLUSIONS: Further research into retinal imaging technologies in CM is justified. In particular, co-ordinated interdisciplinary work shows promise in unpicking the pathophysiology of a complex disease.


Asunto(s)
Malaria Cerebral , Enfermedades de la Retina , Humanos , Inteligencia Artificial , Retina/diagnóstico por imagen , Enfermedades de la Retina/diagnóstico por imagen , Tomografía de Coherencia Óptica/métodos
15.
Malar J ; 21(1): 310, 2022 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-36316704

RESUMEN

BACKGROUND: Recent research has established that acute kidney injury (AKI) is a common problem in severe paediatric malaria. Limited access to kidney diagnostic studies in the low resources settings where malaria is common has constrained research on this important problem. METHODS: Enrolment data from an ongoing clinical trial of antipyretics in children with central nervous system (CNS) malaria, CNS malaria being malaria with seizures or coma, was used to identify risk factors for AKI at presentation. Children 2-11 years old with CNS malaria underwent screening and enrollment assessments which included demographic and anthropomorphic data, clinical details regarding the acute illness, and laboratory studies including creatinine (Cr), quantitative parasite count (qPC), quantitative histidine rich protein 2 (HRP2), lactate, and bilirubin levels. Children with a screening Cr > 106 µmol/l were excluded from the study due to the potential nephrotoxic effects of the study drug. To identify risk factors for AKI at the time of admission, children who were enrolled in the study were categorized as having AKI using estimates of their baseline (i.e. before this acute illness) kidney function and creatinine at enrollment applying the Kidney Disease: Improving Global Outcome (KDIGO) 2012 guidelines. Logistic regressions and a multivariate model were used to identify clinical and demographic risk factors for AKI at presentation among those children enrolled in the study. RESULTS: 465 children were screened, 377 were age-appropriate with CNS malaria, 22 (5.8%) were excluded due to Cr > 106 µmol/l, and 209 were enrolled. Among the 209, AKI using KDIGO criteria was observed in 134 (64.1%). One child required dialysis during recovery. Risk factors for AKI in both the logistic regression and multivariate models included: hyperpyrexia (OR 3.36; 95% CI 1.39-8.12) and age with older children being less likely to have AKI (OR 0.72; 95% CI 0.62-0.84). CONCLUSION: AKI is extremely common among children presenting with CNS malaria. Hyperpyrexia with associated dehydration may contribute to the AKI or may simply be a marker for a more inflammatory systemic response that is also affecting the kidney. Appropriate fluid management in children with CNS malaria and AKI may be challenging since generous hydration to support kidney recovery could worsen malaria-induced cerebral oedema in this critically ill population. Trial registration https://clinicaltrials.gov/ct2/show/NCT03399318.


Asunto(s)
Lesión Renal Aguda , Malaria , Niño , Preescolar , Humanos , Enfermedad Aguda , Lesión Renal Aguda/epidemiología , Lesión Renal Aguda/etiología , Lesión Renal Aguda/diagnóstico , Estudios de Casos y Controles , Sistema Nervioso Central , Creatinina , Malaria/diagnóstico , Factores de Riesgo
16.
Am J Trop Med Hyg ; 107(4_Suppl): 40-48, 2022 10 11.
Artículo en Inglés | MEDLINE | ID: mdl-36228915

RESUMEN

Despite the scale-up of interventions against malaria over the past decade, this disease remains a leading threat to health in Malawi. To evaluate the epidemiology of both Plasmodium falciparum infection and malaria disease, the Malawi International Center of Excellence for Malaria Research (ICEMR) has developed and implemented diverse and robust surveillance and research projects. Descriptive studies in ICEMR Phase 1 increased our understanding of the declining effectiveness of long-lasting insecticidal nets (LLINs), the role of school-age children in malaria parasite transmission, and the complexity of host-parasite interactions leading to disease. These findings informed the design of ICEMR Phase 2 to test hypotheses about LLIN use and effectiveness, vector resistance to insecticides, demographic targets of malaria control, patterns and causes of asymptomatic to life-threatening disease, and the impacts of RTS,S vaccination plus piperonyl butoxide-treated LLINs on infection and disease in young children. These investigations are helping us to understand mosquito-to-human and human-to-mosquito transmission in the context of Malawi's intransigent malaria problem.


Asunto(s)
Mosquiteros Tratados con Insecticida , Insecticidas , Malaria , Animales , Niño , Preescolar , Humanos , Resistencia a los Insecticidas , Insecticidas/farmacología , Insecticidas/uso terapéutico , Malaria/epidemiología , Malaria/prevención & control , Malaui/epidemiología , Control de Mosquitos , Mosquitos Vectores/parasitología , Butóxido de Piperonilo
17.
PLoS One ; 17(10): e0268414, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36206262

RESUMEN

BACKGROUND: Malaria remains a major public health challenge in Africa where annually, ~250,000 children with malaria experience a neurologic injury with subsequent neuro-disability. Evidence indicates that a higher temperature during the acute illness is a risk factor for post-infectious neurologic sequelae. As such, aggressive antipyretic therapy may be warranted among children with complicated malaria at substantial risk of brain injury. Previous clinical trials conducted primarily in children with uncomplicated malaria and using only a single antipyretic medication have shown limited benefits in terms of fever reduction; however, no studies to date have examined malaria fever management using dual therapies. In this clinical trial of aggressive antipyretic therapy, children hospitalized with central nervous system (CNS) malaria will be randomized to usual care (acetaminophen every 6 hours for a temperature ≥ 38.5°C) vs. prophylactic acetaminophen and ibuprofen every 6 hours for 72 hours. METHODS: In this double-blinded, placebo controlled, two-armed clinical trial, we will enroll 284 participants from three settings at Queen Elizabeth Central Hospital in Blantyre, Malawi; at the University Teaching Hospitals Children's Hospital in Lusaka, Zambia and at Chipata Central Hospital, Chipata, Zambia. Parents or guardians must provide written informed consent. Eligible participants are 2-11 years with evidence of P. falciparum malaria infection by peripheral blood smear or rapid diagnostic test with CNS symptoms associated with malaria. Eligible children will receive treatment allocation randomization either to standard of care for fever management or to prophylactic, scheduled treatment every 6 hours for 72 hours with dual antipyretic therapies using acetaminophen and ibuprofen. Assignment to treatment groups will be with 1:1 allocation using blocked randomization. The primary outcome will be maximum temperature in the 72 hours after enrolment. Secondary outcomes include parasite clearance as determined by quantitative Histidine Rich Protein II and seizures through 72 hours after enrolment. DISCUSSION: This clinical trial seeks to challenge the practice paradigm of limited fever treatment based upon hyperpyrexia by evaluating the fever-reduction efficacy of more aggressive antipyretic using two antipyretics and prophylactic administration and will elucidate the impact of antipyretics on parasite clearance and acute symptomatic seizures. If aggressive antipyretic therapy is shown to safely reduce the maximum temperature, a clinical trial evaluating the neuroprotective effects of temperature reduction in CNS malaria is warranted.


Asunto(s)
Antipiréticos , Malaria Falciparum , Fármacos Neuroprotectores , Parásitos , Acetaminofén/uso terapéutico , Animales , Antipiréticos/uso terapéutico , Sistema Nervioso Central , Niño , Fiebre/tratamiento farmacológico , Fiebre/prevención & control , Histidina , Humanos , Ibuprofeno/uso terapéutico , Malaria Falciparum/complicaciones , Malaria Falciparum/tratamiento farmacológico , Fármacos Neuroprotectores/uso terapéutico , Ensayos Clínicos Controlados Aleatorios como Asunto , Convulsiones/tratamiento farmacológico , Resultado del Tratamiento , Zambia
18.
Malar J ; 21(1): 196, 2022 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-35729574

RESUMEN

BACKGROUND: Cerebral malaria (CM) results in significant paediatric death and neurodisability in sub-Saharan Africa. Several different alterations to typical Transcranial Doppler Ultrasound (TCD) flow velocities and waveforms in CM have been described, but mechanistic contributors to these abnormalities are unknown. If identified, targeted, TCD-guided adjunctive therapy in CM may improve outcomes. METHODS: This was a prospective, observational study of children 6 months to 12 years with CM in Blantyre, Malawi recruited between January 2018 and June 2021. Medical history, physical examination, laboratory analysis, electroencephalogram, and magnetic resonance imaging were undertaken on presentation. Admission TCD results determined phenotypic grouping following a priori definitions. Evaluation of the relationship between haemodynamic, metabolic, or intracranial perturbations that lead to these observed phenotypes in other diseases was undertaken. Neurological outcomes at hospital discharge were evaluated using the Paediatric Cerebral Performance Categorization (PCPC) score. RESULTS: One hundred seventy-four patients were enrolled. Seven (4%) had a normal TCD examination, 57 (33%) met criteria for hyperaemia, 50 (29%) for low flow, 14 (8%) for microvascular obstruction, 11 (6%) for vasospasm, and 35 (20%) for isolated posterior circulation high flow. A lower cardiac index (CI) and higher systemic vascular resistive index (SVRI) were present in those with low flow than other groups (p < 0.003), though these values are normal for age (CI 4.4 [3.7,5] l/min/m2, SVRI 1552 [1197,1961] dscm-5m2). Other parameters were largely not significantly different between phenotypes. Overall, 118 children (68%) had a good neurological outcome. Twenty-three (13%) died, and 33 (19%) had neurological deficits. Outcomes were best for participants with hyperaemia and isolated posterior high flow (PCPC 1-2 in 77 and 89% respectively). Participants with low flow had the least likelihood of a good outcome (PCPC 1-2 in 42%) (p < 0.001). Cerebral autoregulation was significantly better in children with good outcome (transient hyperemic response ratio (THRR) 1.12 [1.04,1.2]) compared to a poor outcome (THRR 1.05 [0.98,1.02], p = 0.05). CONCLUSIONS: Common pathophysiological mechanisms leading to TCD phenotypes in non-malarial illness are not causative in children with CM. Alternative mechanistic contributors, including mechanical factors of the cerebrovasculature and biologically active regulators of vascular tone should be explored.


Asunto(s)
Hiperemia , Malaria Cerebral , Vasoespasmo Intracraneal , Circulación Cerebrovascular/fisiología , Niño , Humanos , Hiperemia/complicaciones , Malaria Cerebral/complicaciones , Malaria Cerebral/diagnóstico por imagen , Fenotipo , Estudios Prospectivos , Ultrasonografía Doppler Transcraneal/efectos adversos , Ultrasonografía Doppler Transcraneal/métodos , Vasoespasmo Intracraneal/etiología
19.
J Infect Dis ; 226(1): 138-146, 2022 08 12.
Artículo en Inglés | MEDLINE | ID: mdl-35290461

RESUMEN

BACKGROUND: In areas highly endemic for malaria, Plasmodium falciparum infection prevalence peaks in school-age children, adversely affecting health and education. School-based intermittent preventive treatment reduces this burden but concerns about cost and widespread use of antimalarial drugs limit enthusiasm for this approach. School-based screening and treatment is an attractive alternative. In a prospective cohort study, we evaluated the impact of school-based screening and treatment on the prevalence of P. falciparum infection and anemia in 2 transmission settings. METHODS: We screened 704 students in 4 Malawian primary schools for P. falciparum infection using rapid diagnostic tests (RDTs), and treated students who tested positive with artemether-lumefantrine. We determined P. falciparum infection by microscopy and quantitative polymerase chain reaction (qPCR), and hemoglobin concentrations over 6 weeks in all students. RESULTS: Prevalence of infection by RDT screening was 37% (9%-64% among schools). An additional 9% of students had infections detected by qPCR. Following the intervention, significant reductions in infections were detected by microscopy (adjusted relative reduction [aRR], 48.8%; P < .0001) and qPCR (aRR, 24.5%; P < .0001), and in anemia prevalence (aRR, 30.8%; P = .003). Intervention impact was reduced by infections not detected by RDT and new infections following treatment. CONCLUSIONS: School-based screening and treatment reduced P. falciparum infection and anemia. This approach could be enhanced by repeating screening, using more-sensitive screening tests, and providing longer-acting drugs. CLINICAL TRIALS REGISTRATION: NCT04858087.


Asunto(s)
Anemia , Antimaláricos , Malaria Falciparum , Malaria , Anemia/diagnóstico , Anemia/epidemiología , Anemia/prevención & control , Antimaláricos/uso terapéutico , Arteméter , Combinación Arteméter y Lumefantrina/uso terapéutico , Niño , Humanos , Malaria/epidemiología , Malaria Falciparum/diagnóstico , Malaria Falciparum/tratamiento farmacológico , Malaria Falciparum/epidemiología , Malaui/epidemiología , Plasmodium falciparum , Prevalencia , Estudios Prospectivos , Instituciones Académicas
20.
Front Cell Infect Microbiol ; 12: 813011, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35155278

RESUMEN

Cytoadhesion of Plasmodium falciparum-infected red blood cells is a virulence determinant associated with microvascular obstruction and organ complications. The gastrointestinal tract is a major site of sequestration in fatal cerebral malaria cases and kidney complications are common in severe malaria, but parasite interactions with these microvascular sites are poorly characterized. To study parasite tropism for different microvascular sites, we investigated binding of parasite lines to primary human microvascular endothelial cells from intestine (HIMEC) and peritubular kidney (HKMEC) sites. Of the three major host receptors for P. falciparum, CD36 had low or negligible expression; endothelial protein C receptor (EPCR) had the broadest constitutive expression; and intercellular adhesion molecule 1 (ICAM-1) was weakly expressed on resting cells and was strongly upregulated by TNF-α on primary endothelial cells from the brain, intestine, and peritubular kidney sites. By studying parasite lines expressing var genes linked to severe malaria, we provide evidence that both the DC8 and Group A EPCR-binding subsets of the P. falciparum erythrocyte membrane protein 1 (PfEMP1) family encodes binding affinity for brain, intestinal, and peritubular kidney endothelial cells, and that DC8 parasite adhesion was partially dependent on EPCR. Collectively, these findings raise the possibility of a brain-gut-kidney binding axis contributing to multi-organ complications in severe malaria.


Asunto(s)
Malaria Falciparum , Parásitos , Animales , Encéfalo/metabolismo , Adhesión Celular , Células Endoteliales/metabolismo , Eritrocitos/parasitología , Humanos , Intestinos , Riñón/metabolismo , Malaria Falciparum/parasitología , Parásitos/metabolismo , Plasmodium falciparum/genética , Proteínas Protozoarias/metabolismo , Receptores de Superficie Celular/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...