Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
Artículo en Inglés | MEDLINE | ID: mdl-38275046

RESUMEN

BACKGROUND AND OBJECTIVE: Snakebite envenoming is a serious public health issue causing more than 135,000 annual deaths worldwide. Naja naja oxiana is one of the most clinically important venomous snakes in Iran and Central Asia. Conventional animal-derived polyclonal antibodies are the major treatment of snakebite envenoming. Characterization of venom components helps to pinpoint the toxic protein responsible for clinical manifestations in victims, which aids us in developing efficient antivenoms with minimal side effects. Therefore, the present study aimed to identify the major lethal protein of Naja naja oxiana by top-down proteomics. METHODS: Venom proteomic profiling was performed using gel filtration (GF), reversed-phase (RP) chromatography, and intact mass spectrometry. The toxicity of GF-, and RP-eluted fractions was analyzed in BALB/c mice. The rabbit polyclonal antisera were produced against crude venom, GF fraction V (FV), and RP peak 1 (CTXP) and applied in neutralization assays. RESULTS: Toxicity studies in BALB/c identified FV as the major toxic fraction of venom. Subsequently, RP separation of FV resulted in eight peaks, of which peak 1, referred to as "CTXP" (cobra toxin peptide), was identified as the major lethal protein. In vivo neutralization assays using rabbit antisera showed that polyclonal antibodies raised against FV and CTXP are capable of neutralizing at least 2-LD50s of crude venom, FV, and CTXP in all tested mice. CONCLUSION: Surprisingly, the Anti-CTXP antibody could neutralize 8-LD50 of the CTXP peptide. These results identified CTXP (a 7 kDa peptide) as a potential target for the development of novel efficient antivenom agents.

2.
Front Microbiol ; 13: 888452, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35875562

RESUMEN

Fungal co-infections are frequent in patients with coronavirus disease 2019 (COVID-19) and can affect patient outcomes and hamper therapeutic efforts. Nonetheless, few studies have investigated fungal co-infections in this population. This study was performed to assess the rate of fungal co-infection in patients with COVID-19 as a systematic review. EMBASE, MEDLINE, and Web of Science were searched considering broad-based search criteria associated with COVID-19 and fungal co-infection. We included case reports and case series studies, published in the English language from January 1, 2020 to November 30, 2021, that reported clinical features, diagnosis, and outcomes of fungal co-infection in patients with Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). Totally, 54 case reports and 17 case series were identified, and 181 patients (132 men, 47 women, and 2 not mentioned) co-infected with COVID-19 and fungal infection enrolled. The frequency of fungal co-infection among patients with COVID-19 was 49.7, 23.2, 19.8, 6.6, and 0.5% in Asia, America, Europe, Africa, and Australia, respectively. Diabetes (59.6%) and hypertension (35.9%) were found as the most considered comorbidities in COVID-19 patients with fungal infections. These patients mainly suffered from fever (40.8%), cough (30.3%), and dyspnea (23.7%). The most frequent findings in the laboratory results of patients and increase in C-reactive protein (CRP) (33.1%) and ferritin (18.2%), and lymphopenia (16%) were reported. The most common etiological agents of fungal infections were Aspergillus spp., Mucor spp., Rhizopus spp., and Candida spp. reported in study patients. The mortality rate was 54.6%, and the rate of discharged patients was 45.3%. Remdesivir and voriconazole were the most commonly used antiviral and antifungal agents for the treatment of patients. The global prevalence of COVID-19-related deaths is 6.6%. Our results showed that 54.6% of COVID-19 patients with fungal co-infections died. Thus, this study indicated that fungal co-infection and COVID-19 could increase mortality. Targeted policies should be considered to address this raised risk in the current pandemic. In addition, fungal infections are sometimes diagnosed late in patients with COVID-19, and the severity of the disease worsens, especially in patients with underlying conditions. Therefore, patients with fungal infections should be screened regularly during the COVID-19 pandemic to prevent the spread of the COVID-19 patients with fungal co-infection.

3.
Probiotics Antimicrob Proteins ; 14(2): 326-336, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35050481

RESUMEN

Today, resistance of microorganisms to antibiotics has become a major challenge. To overcome this problem, development of new drugs, besides research on their antibacterial activity, is essential. Among chemical components, antimicrobial peptides (AMPs) exhibit antibacterial activity and can be selected as suitable antimicrobial candidates. In this study, a novel antimicrobial peptide, called dendrocin-ZM1, with a molecular weight of ~3716.48 Da, was isolated from Zataria multiflora Boiss (ZM) and purified via precipitation with ammonium sulfate and reverse-phase HPLC chromatography; it was then sequenced via Edman degradation. The in silico method was used to examine the physicochemical properties of dendrocin-ZM1. In this study, four reference strains (gram-positive and gram-negative) and one clinical vancomycin-resistant Staphylococcus aureus strain were used to survey the antimicrobial activities. Moreover, to examine cytotoxicity and hemolytic activity, a HEK-293 cell line and human red blood cells (RBCs) were used, respectively. Evaluation of the physicochemical properties of dendrocin-ZM1, as an AMP, indicated a net charge of + 7 and a hydrophobicity percentage of 54%. This peptide had an amphipathic alpha-helical conformation. It exhibited broad-spectrum antibacterial activities against the tested strains at minimum inhibitory concentrations (MICs) of 4-16 µg/mL. Besides, this peptide showed negligible hemolysis and cytotoxicity in the MIC range. It also exhibited heat stability at temperatures of 20 to 80 °C and was active in a broad pH range (from 6.0 to 10.0). Overall, the present results suggested dendrocin-ZM1 as a remarkable antimicrobial candidate.


Asunto(s)
Antiinfecciosos , Staphylococcus aureus Resistente a Meticilina , Antibacterianos/química , Antibacterianos/farmacología , Células HEK293 , Hemólisis , Humanos , Pruebas de Sensibilidad Microbiana , Péptidos
4.
Front Cell Infect Microbiol ; 11: 743346, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34708005

RESUMEN

Due to the increasing rate of invasive fungal infections and emerging antifungal resistance, development of novel antifungal drugs has been an urgent necessity. Antifungal peptides (AFPs) have recently attracted attention due to their unique ability to evade drug-resistant fungal pathogens. In this study, a novel AFP, Cc-AFP1, with a molecular weight of ~3.759 kDa, was isolated from Carum carvi L., purified by ammonium sulfate precipitation and reversed-phase HPLC and finally identified by sequence analysis using Edman degradation. Peptide sequence analysis revealed a fragment of 36 amino acid residues as RVCFRPVAPYLGVGVSGAVRDQIGVKLGSVYKGPRG for Cc-AFP1 with a net charge of +5 and a hydrophobicity ratio of 38%. The antifungal activity of Cc-AFP1 was confirmed against Aspergillus species with MIC values in the range of 8-16 µg/ml. Cc-AFP1 had less than 5% hemolytic activity at 8-16 µg/ml on human red blood cells with no obvious cytotoxicity against the HEK293 cell line. Stability analysis showed that the activity of Cc-AFP1 was maintained at different temperatures (20°C to 80°C) and pH (8 to 10). The results of a propidium iodide uptake and transmission electron microscopy showed that the antifungal activity of Cc-AFP1 could be attributed to alteration in the fungal cell membrane permeability. Taken together, these results indicate that Cc-AFP1 may be an attractive molecule to develop as a novel antifungal agent combating fungal infections cause by Aspergillus species.


Asunto(s)
Antifúngicos , Carum , Antifúngicos/farmacología , Aspergillus , Células HEK293 , Humanos , Pruebas de Sensibilidad Microbiana , Péptidos/farmacología
5.
Front Fungal Biol ; 2: 638595, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-37744143

RESUMEN

Fungal species resistant to current antifungal agents are considered as a serious threat to human health, the dilemma that has dragged attentions toward other sources of antifungals such as antimicrobial peptides (AMPs). In order to improve biological activity of a recently described antifungal peptide MCh-AMP1 from Matricaria chamomilla flowers, MCh-AMP1dimer (DiMCh-AMP1), containing 61 amino acid residues connected by flexible linker (GPDGSGPDESGPDES), was designed and expressed in Escherichia coli, and its structure was analyzed using bioinformatics tools. DiMCh-AMP1 synthetic gene was cloned into pET-28a expression vector, which was then used to transform E. coli BL21 (DE3) strain. His-tag purification was achieved using metal-chelate affinity chromatography. Because there is no methionine residue in the DiMCh-AMP1 sequence, cyanogen bromide was successfully used to separate the target product from the tag. Reverse-phase high-performance liquid chromatography was used as the final step of purification. Results showed that recombinant peptide was produced in considerable amounts (0.9 mg/L) with improved antifungal activity toward both yeasts and molds compared to its monomeric counterpart. The minimum inhibition concentration and minimum fungicidal concentration values of DiMCh-AMP1 against Candida and Aspergillus species were reported in the range of 1.67-6.66 µM and 3.33-26.64 µM, respectively. Our results showed that while antifungal activity of dimerized peptide was improved considerably, its cytotoxicity was decreased, implying that DiMCh-AMP1 could be a potential candidate to design an effective antifungal agent against pathogenic yeasts and molds.

6.
Front Microbiol ; 11: 663, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32425898

RESUMEN

The prevalence of Staphylococcus aureus as an aggressive pathogen resistant to multiple antibiotics causing nosocomial and community-acquired infections is increasing with limited therapeutic options. Macrolide-lincosamide streptogramin B (MLSB) family of antibiotics represents an important alternative therapy for staphylococcal infections. This study was conducted over a period of five years from August 2013 to July 2018 to investigate the prevalence and molecular epidemiology in Iran of inducible resistance in S. aureus. In the current study, 126 inducible methicillin-resistant S. aureus (MRSA) (n = 106) and methicillin-sensitive S. aureus (MSSA) (n = 20) isolates were characterized by in vitro susceptibility analysis, resistance and virulence encoding gene distribution, phenotypic and genotypic analysis of biofilm formation, prophage typing, S. aureus protein A locus (spa) typing, staphylocoagulase (SC) typing, staphylococcal cassette chromosome mec (SCCmec) typing, and multilocus sequence typing. Of the 126 isolates, 76 (60.3%) were classified as hospital onset, and 50 (39.7%) were classified as community onset (CO). Biofilm formation was observed in 97 strains (77%). A total of 14 sequence types (STs), 26 spa types, 7 coagulase types, 9 prophage types, 3 agr types (no agr IV), and 9 clonal complexes (CCs) were identified in this study. The prevalence of the inducible MLSB (iMLSB) S. aureus increased from 7.5% (25/335) to 21.7% (38/175) during the study period. The iMLSB MRSA isolates were distributed in nine CCs, whereas the MSSA isolates were less diverse, which mainly belonged to CC22 (7.95%) and CC30 (7.95%). High-level mupirocin-resistant strains belonged to ST85-SCCmec IV/t008 (n = 4), ST5-SCCmec IV/t002 (n = 4), ST239-SCCmec III/t631 (n = 2), and ST8-SCCmec IV/t064 (n = 2) clones, whereas low-level mupirocin-resistant strains belonged to ST15-SCCmec IV/t084 (n = 5), ST239-SCCmec III/t860 (n = 3), and ST22-SCCmec IV/t790 (n = 3) clones. All the fusidic acid-resistant iMLSB isolates were MRSA and belonged to ST15-SCCmec IV/t084 (n = 2), ST239-SCCmec III/t030 (n = 2), ST1-SCCmec V/t6811 (n = 1), ST80-SCCmec IV/t044 (n = 1), and ST59-SCCmec IV/t437 (n = 1). The CC22 that was predominant in 2013-2014 (36% of the isolates) had almost disappeared in 2017-2018, being replaced by the CC8, which represented 39.5% of the 2017-2018 isolates. This is the first description of temporal shifts of iMLSB S. aureus isolates in Iran that identifies predominant clones and treatment options for iMLSB S. aureus-related infections.

7.
Peptides ; 123: 170195, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31704210

RESUMEN

Skh-AMP1 (GRTSKQELCTWERGSVRQADKTIAG) is an antifungal peptide isolated from Satureja khuzistanica which has been shown to have strong antifungal activity against Aspergillus and Candida species, but no obvious hemolytic effects or cell cytotoxicity in vitro. In the present study, Skh-AMP1 was synthesized, and its mode of action on the plasma membrane, mitochondria, and morphological and ultrastructural changes against conidia and hyphae of Aspergillus fumigatus were evaluated. The results indicated that Skh-AMP1 had sporicidal activities against the non-germinated conidia of A. fumigatus at concentrations of 40 and 80 µM. Skh-AMP1 induced the release of K+ and the uptake of propidium iodide and enhanced reactive oxygen species (ROS) production in the conidia and hyphae of the fungus. Scanning and transmission electron microscopy showed deformation and shrinkage of the hyphae and conidia, cell membrane disruption and detachment from the cell wall, microvesicle formation, vacuolation and depletion of cytoplasm and organelles of the hyphae of A. fumigatus exposed to 40-80 µM of the peptide. The results further demonstrated that the antifungal activity of Skh-AMP1 may be related to its ability to disrupt fungal cell membrane permeabilization and induce enhanced ROS production. Therefore, Skh-AMP1 can be introduced as a novel antifungal candidate for developing new therapeutic agents.


Asunto(s)
Antifúngicos , Aspergillus fumigatus/crecimiento & desarrollo , Permeabilidad de la Membrana Celular/efectos de los fármacos , Hifa/crecimiento & desarrollo , Proteínas de Plantas/farmacología , Proteínas Citotóxicas Formadoras de Poros , Especies Reactivas de Oxígeno/metabolismo , Satureja/química , Esporas Fúngicas/crecimiento & desarrollo , Antifúngicos/química , Antifúngicos/farmacología , Proteínas de Plantas/química , Proteínas Citotóxicas Formadoras de Poros/química , Proteínas Citotóxicas Formadoras de Poros/farmacología
8.
Phytochemistry ; 164: 136-143, 2019 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-31128493

RESUMEN

The increasing resistance of pathogenic fungi to conventional antifungal therapies is a major global health concern. Currently, antifungal peptides are receiving increasing attention as suitable candidates for antifungal drug discovery. In the present study, an antifungal peptide was isolated from Satureja khuzistanica by reverse phase-HPLC column and sequenced by de novo sequencing and Edman degradation. The peptide cytotoxicity on human red blood cells and HEK293 cells was assessed using hemolytic and MTT assays. The purified peptide had 25 amino acids with pI and net charge equal to 9.31 and + 2, respectively. According to the systematic nomenclature, this peptide was named Skh-AMP1. The peptide showed strong antifungal activity against pathogenic species of Aspergillus and Candida with MIC values of 19.8-23.4 µM and MFC values of 39.6-58.5 µM. Molecular modeling analysis predicted a α-helix conformation for Skh-AMP1 and the probable hydrophilic residues and hydrophobic regions in the peptide structure which may responsible for its antifungal activity. Skh-AMP1 preserved its stability at the pH of 7 and 8 and the temperatures of 30 and 40 °C. The peptide showed negligible hemolytic activity in the range of 0.19-2.1% at the concentrations of 3.6-72 µM. It has no obvious cytotoxicity against HEK293 cells at the MIC of 25.2 µM for the fungal growth. All together, these properties make Skh-AMP1 as a previously undescribed peptide a promising potential therapeutic agent to combat immerging fungal infections.


Asunto(s)
Antifúngicos/farmacología , Aspergillus fumigatus/efectos de los fármacos , Péptidos/farmacología , Hojas de la Planta/química , Satureja/química , Antifúngicos/química , Antifúngicos/aislamiento & purificación , Aspergillus fumigatus/crecimiento & desarrollo , Supervivencia Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Células HEK293 , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Pruebas de Sensibilidad Microbiana , Conformación Molecular , Péptidos/química , Péptidos/aislamiento & purificación , Relación Estructura-Actividad
9.
Chem Biol Drug Des ; 93(5): 949-959, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30773822

RESUMEN

The antimicrobial activities of natural products have attracted much attention due to the increasing incidence of pathogens that have become resistant to drugs. Thus, it has been attempted to promisingly manage infectious diseases via a new group of therapeutic agents called antimicrobial peptides. In this study, a novel antifungal peptide, MCh-AMP1, was purified by reverse phase HPLC and sequenced by de novo sequencing and Edman degradation. The antifungal activity, safety, thermal, and pH stability of MCh-AMP1 were determined. This peptide demonstrated an antifungal activity against the tested Candida and Aspergillus species with MIC values in the range of 3.33-6.66 µM and 6.66-13.32 µM, respectively. Further, physicochemical properties and molecular modeling of MCh-AMP1 were evaluated. MCh-AMP1 demonstrated 3.65% hemolytic activity at the concentration of 13.32 µM on human red blood cells and 10% toxicity after 48 hr at the same concentration on HEK293 cell lines. The antifungal activity of MCh-AMP1 against Candida albicans was stable at a temperature range of 30-50°C and at the pH level of 7-11. The present study indicates that MCh-AMP1 may be considered as a new antifungal agent with therapeutic potential against major human pathogenic fungi.


Asunto(s)
Antifúngicos/farmacología , Péptidos Catiónicos Antimicrobianos/química , Aspergillus/efectos de los fármacos , Bencimidazoles/química , Candida/efectos de los fármacos , Matricaria/química , Péptidos/química , Pirazoles/química , Secuencia de Aminoácidos , Antifúngicos/química , Antifúngicos/aislamiento & purificación , Péptidos Catiónicos Antimicrobianos/aislamiento & purificación , Péptidos Catiónicos Antimicrobianos/farmacología , Bencimidazoles/aislamiento & purificación , Bencimidazoles/farmacología , Supervivencia Celular/efectos de los fármacos , Células HEK293 , Hemólisis/efectos de los fármacos , Humanos , Concentración de Iones de Hidrógeno , Matricaria/metabolismo , Pruebas de Sensibilidad Microbiana , Péptidos/aislamiento & purificación , Péptidos/farmacología , Extractos Vegetales/metabolismo , Estabilidad Proteica , Pirazoles/aislamiento & purificación , Pirazoles/farmacología , Alineación de Secuencia , Temperatura
10.
Front Microbiol ; 10: 3150, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-32038583

RESUMEN

The rise of antifungal drug resistance in Candida species responsible for life threatening candidiasis is considered as an increasing challenge for the public health. MCh-AMP1 has previously been reported as a natural peptide from Matricaria chamomilla L. flowers with broad-spectrum antifungal activity against human pathogenic molds and yeasts. In the current study, the mode of action of synthetic MCh-AMP1 was investigated against Candida albicans, the major etiologic agent of life-threatening nosocomial candidiasis at cellular and molecular levels. Candida albicans ATCC 10231 was cultured in presence of various concentrations of MCh-AMP1 (16-64 µg/mL) and its mode of action was investigated using plasma membrane permeabilization assays, reactive oxygen species (ROS) induction, potassium ion leakage and ultrastructural analyses by electron microscopy. MCh-AMP1 showed fungicidal activity against Candida albicans at the concentrations of 32 and 64 µg/mL. The peptide increased fungal cell membrane permeability as evidenced by elevating of PI uptake and induced potassium leakage from the yeast cells. ROS production was induced by the peptide inside the fungal cells to a maximum of 64.8% at the concentration of 64 µg/mL. Scanning electron microscopy observations showed cell deformation as shrinkage and folding of treated yeast cells. Transmission electron microscopy showed detachment of plasma membrane from the cell wall, cell depletion and massive destruction of intracellular organelles and cell membrane of the fungal cells. Our results demonstrated that MCh-AMP1 caused Candida albicans cell death via increasing cell membrane permeability and inducing ROS production. Therefore, MCh-AMP1 could be considered as a promising therapeutic agent to combat Candida albicans infections.

11.
BMC Infect Dis ; 17(1): 673, 2017 10 11.
Artículo en Inglés | MEDLINE | ID: mdl-29020928

RESUMEN

BACKGROUND: Forkhead box protein 3 (FoxP3) is an important factor for development and function of Regulatory T cells (Treg). Studies have found an association between common gene polymorphisms in FoxP3 and some infectious diseases. The aim of this study was to evaluate possible associations between two Single nucleotide polymorphisms (SNPs) in the promoter of the FoxP3 gene to susceptibility to tuberculosis (TB) and the alteration of Foxp3 gene expression. METHODS: The pattern distribution of genotype at two position, -3279 A > C (rs3761548) and -924 A > G (rs2232365) on the promoter of FoxP3 gene was evaluated using polymerase chain reaction-single specific primer (PCR-SSP) method in 183 tuberculosis patients and 183 healthy control. In addition the quantity of FoxP3 gene expression at mRNA level was identified by the real-time PCR. RESULTS: The frequency of G allele at -924 A > G was significantly higher was higher in TB patients (59.5%) than control group (39.5%) (P ≤ 0.05). In addition, our data viewed approximately 5- folds more FoxP3 gene expression in female patients with GG genotype in comparison to female healthy cases with the same genotype (P ≤ 0.001). There was no statistically significant differences between the distribution pattern of -3279 A > C polymorphism in patients and healthy individuals along with it effect on the FoxP3 gene expression among both groups (P > 0.05). CONCLUSIONS: Our outcome suggests that the -924 A > G polymorphism leads to enhance FoxP3 gene expression and susceptibility to tuberculosis in the sex dependent manner. This event may rise the count of Treg cells and modulate the immune response against tuberculosis.


Asunto(s)
Factores de Transcripción Forkhead/genética , Polimorfismo de Nucleótido Simple , Tuberculosis/genética , Adulto , Anciano , Alelos , Estudios de Casos y Controles , Estudios Transversales , Femenino , Expresión Génica , Frecuencia de los Genes , Predisposición Genética a la Enfermedad , Humanos , Irán , Masculino , Persona de Mediana Edad , Regiones Promotoras Genéticas , Reacción en Cadena en Tiempo Real de la Polimerasa
12.
Microb Pathog ; 104: 328-335, 2017 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-28159661

RESUMEN

The widespread emergence of methicillin resistant Staphylococcus aureus, as a common cause of nosocomial infections, is becoming a serious concern in global public health. The objective of the present study was to investigate antimicrobial susceptibility pattern, frequency of virulence genes and molecular characteristics of methicillin-resistant Staphylococcus aureus strains isolated from patients with bacteremia. A total of 128 methicillin-resistant Staphylococcus aureus isolates were collected during February 2015 to January 2016. In vitro antimicrobial susceptibility of the isolates was assessed using the disk diffusion method. Conventional PCR was performed for the detection of adhesion (can, bbp, ebp, fnbB, fnbA, clfB, clfA) and toxin (etb, eta, pvl, tst) encoding genes, determining the agr type, SCCmec, MLST and spa typing of the isolates. All the methicillin-resistant Staphylococcus aureus isolates were found to be sensitive to linezolid, teicoplanin, and vancomycin. Resistance to the tested antibiotics varied from 97.7% for penicillin to 24.2% for mupirocin. The rate of multi drug resistance (MDR) in the present study was 97.7%. The most commonly detected toxin and adhesion genes were tst (58.6%), and clfB (100%), respectively. The majority of SCCmec III isolates were found in agr group I while SCCmec IV and II isolates were distributed among agr group III. Multilocus Sequence Typing (MLST) of the MRSA isolates showed five different sequence types: ST239 (43%), ST22 (39.8%), ST585 (10.9%), ST45 (3.9%) and ST240 (2.3%). All of the pvl positive strains belonged to ST22-SCCmec IV/t790 clone and were MDR. Among different 7 spa types, the most common were t790 (27.3%), t037 (21.9%), and t030 (14.1%). spa types t016, t924 and spa type t383 were reported for the first time from Asia and Iran, respectively. It was shown that spa types circulating in the studied hospitals varied which support the need to perform future surveillance studies in order to understand methicillin-resistant Staphylococcus aureus distribution and thus more effective infection control.


Asunto(s)
Bacteriemia/microbiología , Genotipo , Staphylococcus aureus Resistente a Meticilina/clasificación , Staphylococcus aureus Resistente a Meticilina/genética , Tipificación Molecular , Infecciones Estafilocócicas/microbiología , Antibacterianos/farmacología , Bacteriemia/epidemiología , Proteínas Bacterianas/genética , Estudios Transversales , Pruebas Antimicrobianas de Difusión por Disco , Hospitales , Humanos , Irán/epidemiología , Staphylococcus aureus Resistente a Meticilina/aislamiento & purificación , Epidemiología Molecular , Reacción en Cadena de la Polimerasa , Infecciones Estafilocócicas/epidemiología , Proteína Estafilocócica A/genética , Transactivadores/genética , Factores de Virulencia/genética
13.
Jundishapur J Microbiol ; 9(7): e35685, 2016 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-27679706

RESUMEN

BACKGROUND: The incidence of nosocomial Staphylococcus aureus infection is increasing annually and becoming a true global challenge. The pattern of Staphylococcus aureus protein A (spa) types in different geographic regions is diverse. OBJECTIVES: This study determined the prevalence of methicillin-resistant S. aureus and different spa types in S. aureus clinical isolates. MATERIALS AND METHODS: During a six-month period, 90 S. aureus isolates were recovered from 320 clinical specimens. The in vitro susceptibility of various S. aureus isolates to 16 antibiotic discs was assessed using the Kirby-Bauer disk diffusion method. Molecular typing was carried out with S. aureus protein A typing via polymerase chain reaction. RESULTS: The frequency of methicillin-resistant S. aureus in our study was 88.9%. Twenty-three (25.5%) isolates were positive for panton-valentine leukocidin encoding genes. S. aureus presented a high resistance rate to ampicillin (100%) and penicillin (100%). No resistance was observed to vancomycin, teicoplanin, or linezolid. The rates of resistance to the majority of antibiotics tested varied between 23.3% and 82.2%. The rate of multidrug resistance among these clinical isolates was 93.3%. The 90 S. aureus isolates were classified into five S. aureus protein A types: t037 (33.3%), t030 (22.2%), t790 (16.7%), t969 (11.1%), and t044 (7.7%). Eight (8.9%) isolates were not typable using the S. aureus protein A typing method. CONCLUSIONS: We report a high methicillin-resistant S. aureus rate in our hospital. Additionally, t030 and t037 were the predominant spa-types among hospital-associated S. aureus. Our findings emphasize the need for continuous surveillance to prevent the dissemination of multidrug resistance among different S. aureus protein A types in Iran.

14.
Asian Pac J Cancer Prev ; 17(7): 3309-15, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27509968

RESUMEN

Helicobacter pylori as the second most common cause of gastric cancer in the world infects approximately half of the developed countries population and 80% of the population living in developing countries. Integrons as genetic reservoirs play major roles in dissemination of antimicrobial resistance genes. To the best of our knowledge, this is the first study to report carriage of class 1 and 2 integrons and associated gene cassettes in H. pylori isolates from Iran. This crosssectional study was conducted in Tehran among 110 patients with H. pylori infection. Antimicrobial susceptibility testing (AST) for H. pylori strains were assessed by the micro broth dilution method. Class 1 and 2 integrons were detected using PCR. In order to determine gene cassettes, amplified fragments were subjected to DNA sequencing of both amplicon strands. The prevalence of resistance to clarithromycin, metronidazole, clarithromycin, tetracycline, amoxicillin, rifampin, and levofloxacin were 68.2% (n=75), 25.5% (n=28), 24.5% (n=27), 19.1% (n=21), 18.2% (n=20) and 16.4% (n=18), respectively. Frequency of multidrug resistance among H. pylori isolates was 12.7%. Class 2 integron was detected in 50 (45.5%) and class 1 integron in 10 (9.1%) H. pylori isolates. The most predominant gene cassette arrays in class 2 integron bearing H. pylori were included sateraaadA1, dfrA1sat2aadA1, blaoxa2 and, aadB whereas common gene cassette arrays in class 1 integron were aadBaadA1cmlA6, aacA4, blaoxa2, and catB3. The high frequency of class 2 integron and multidrug resistance in the present study should be considered as a warning for clinicians that continuous surveillance is necessary to prevent the further spread of resistant isolates.


Asunto(s)
Infecciones por Helicobacter/microbiología , Helicobacter pylori/genética , Helicobacter pylori/aislamiento & purificación , Integrones/genética , Adulto , Anciano , Antibacterianos/uso terapéutico , Estudios Transversales , ADN Bacteriano/genética , Farmacorresistencia Bacteriana Múltiple/genética , Femenino , Infecciones por Helicobacter/tratamiento farmacológico , Humanos , Irán , Masculino , Pruebas de Sensibilidad Microbiana/métodos , Persona de Mediana Edad , Reacción en Cadena de la Polimerasa/métodos
15.
PLoS One ; 11(5): e0155529, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27171373

RESUMEN

INTRODUCTION: The emergence of methicillin-resistant Staphylococcus aureus (MRSA) in different patient populations is a major public health concern. This study determined the prevalence and distribution of circulating molecular types of MRSA in hospitalized patients in ICU of hospitals in Tehran. MATERIALS AND METHODS: A total of 70 MRSA isolates were collected from patients in eight hospitals. Antimicrobial resistance patterns were determined using the disk diffusion method. The presence of toxin encoding genes and the vancomycin resistance gene were determined by PCR. The MRSA isolates were further analyzed using multi-locus sequence, spa, SCCmec, and agr typing. RESULTS: The MRSA prevalence was 93.3%. Antimicrobial susceptibility testing revealed a high resistance rate (97.1%) to ampicillin and penicillin. The rate of resistance to the majority of antibiotics tested was 30% to 71.4%. Two isolates belonging to the ST22-SCCmec IV/t790 clone (MIC ≥ 8 µg/ml) had intermediate resistance to vancomycin. The majority of MRSA isolates (24.3%) were associated with the ST22-SCCmec IV/t790 clone; the other MRSA clones were ST859-SCCmec IV/t969 (18.6%), ST239-SCCmec III/t037 (17.1%), and ST291-SCCmec IV/t030 (8.6%). CONCLUSIONS: The circulating MRSA strains in Iranian hospitals were genetically diverse with a relatively high prevalence of the ST22-SCCmec IV/t790 clone. These findings support the need for future surveillance studies on MRSA to better elucidate the distribution of existing MRSA clones and detect emergence of new MRSA clones.


Asunto(s)
Unidades de Cuidados Intensivos , Staphylococcus aureus Resistente a Meticilina/genética , Staphylococcus aureus Resistente a Meticilina/aislamiento & purificación , Adolescente , Adulto , Anciano , Antiinfecciosos/farmacología , Niño , Preescolar , Células Clonales , Femenino , Humanos , Lactante , Irán/epidemiología , Masculino , Staphylococcus aureus Resistente a Meticilina/efectos de los fármacos , Pruebas de Sensibilidad Microbiana , Persona de Mediana Edad , Infecciones Estafilocócicas/epidemiología , Infecciones Estafilocócicas/microbiología
16.
Scientifica (Cairo) ; 2015: 518167, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26301114

RESUMEN

Objective. Plasmid-mediated quinolone resistance (PMQR) plays an important role in the development of clinical resistance to quinolone. The aim of this study was to investigate PMQR determinants among extended-spectrum ß-lactamases- (ESBL-) producing Klebsiella pneumoniae recovered from patients with nosocomial urinary tract infection (UTI). Methods. A total of 247 ESBL-producing K. pneumoniae isolates were collected from 750 patients with UTI. ESBL production was confirmed by double disc synergy test and combined disc diffusion test. The prevalence of PMQR determinants among ESBL-producing K. pneumoniae was assessed using PCR method. Results. The rates of resistance to antimicrobial agents in present study varied from 14.2% to 98.8%. In comparison with other PMQR genotypes, the frequency of aac(6')-Ib (68.8%) was strikingly high. Of the 247 isolates tested, qnrA, qnrB, qnrS, and qepA genes were present in 3.6%, 1.6%, 1.2, and 2%, respectively. oqxA and oqxB were detected in 56.7% and 54.6% of isolates. The predominant coexisting ESBL and PMQR profile among our isolates included bla CTX-M and aac(6')-Ib, oqxA, oqxB (28.3%) and bla TEM, bla SHV and aac(6')-Ib, oqxA, and oqxB (19.4%) profile. Conclusion. Given the linkage observed between resistance to quinolones and beta lactam antibiotics, therapeutic protocol with fluoroquinolones and beta lactam antibiotics should be seriously revised in Tehran hospitals.

17.
Chemother Res Pract ; 2015: 639806, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26266047

RESUMEN

Objective. Aloe vera is an herbal medicinal plant with biological activities, such as antimicrobial, anticancer, anti-inflammatory, and antidiabetic ones, and immunomodulatory properties. The purpose of this study was investigation of in vitro antimicrobial activity of A. vera gel against multidrug-resistant (MDR) Pseudomonas aeruginosa isolated from patients with burn wound infections. Methods. During a 6-month study, 140 clinical isolates of P. aeruginosa were collected from patients admitted to the burn wards of a hospital in Tehran, Iran. Antimicrobial susceptibility test was carried out against the pathogens using the A. vera gel and antibiotics (imipenem, gentamicin, and ciprofloxacin). Results. The antibiogram revealed that 47 (33.6%) of all isolates were MDR P. aeruginosa. The extract isolated from A. vera has antibacterial activity against all of isolates. Also, 42 (89.4%) isolates were inhibited by A. vera gel extract at minimum inhibitory concentration (MIC) ≤ 200 µg/mL. MIC value of A. vera gel for other isolates (10.6%) was 800 µg/mL. All of MDR P. aeruginosa strains were inhibited by A. vera at similar MIC50 and MIC90 200 µg/mL. Conclusion. Based on our results, A. vera gel at various concentrations can be used as an effective antibacterial agent in order to prevent wound infection caused by P. aeruginosa.

18.
Asian Pac J Cancer Prev ; 16(13): 5219-23, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26225656

RESUMEN

Helicobacter pylori (H. pylori) infection as a serious problem in both adults and children can induce chronic gastritis, peptic ulcer disease (PUD), and possibly gastric cancer. The aim of the current study was to survey antibiotic resistance and also to determine influence of PPARγ polymorphism in patients with H. pylori infection. During an 11-month-period, 98 H. pylori isolates were collected from 104 biopsy specimens. In vitro susceptibility of H. pylori isolates to 4 antimicrobial agents metronidazole, clarithromycin, amoxicillin and tetracycline were assessed by quantitative method according to European Committee on Antimicrobial Susceptibility Testing (EUCAST) guideline. PPARγ polymorphism was determined using polymerase chain reaction-restriction fragment length polymorphism assay. The frequency of H. pylori infection in our study was 94.2%. In vitro susceptibility data showed that highest level of resistance was related to metronidazole (66.3%), and the majority of H. pylori isolates were highly susceptible to amoxicillin and tetracycline (94.9% and 96.9%, respectively). Genotypic frequencies were 25.5% for CC (Pro12Pro), 40.8% for GC (Pro12Ala) and 33.7% for GG (Ala12Ala). In our study, CG genotype had highest distributions among infected patients with H. pylori. The study suggests that the PPAR-γ Pro12Ala polymorphism could be evaluated as a potential genetic marker for susceptibility to gastric cancer in the presence of H. pylori infection.


Asunto(s)
Infecciones por Helicobacter/genética , Helicobacter pylori/genética , PPAR gamma/genética , Úlcera Péptica/diagnóstico , Polimorfismo Genético/genética , Neoplasias Gástricas/diagnóstico , Adulto , Biomarcadores/metabolismo , Estudios Transversales , Femenino , Estudios de Seguimiento , Infecciones por Helicobacter/complicaciones , Infecciones por Helicobacter/diagnóstico , Infecciones por Helicobacter/virología , Humanos , Irán/epidemiología , Masculino , Persona de Mediana Edad , Estadificación de Neoplasias , Úlcera Péptica/epidemiología , Úlcera Péptica/etiología , Prevalencia , Pronóstico , Neoplasias Gástricas/epidemiología , Neoplasias Gástricas/etiología
19.
Scientifica (Cairo) ; 2014: 916826, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24991448

RESUMEN

The incidence and mortality rate of Clostridium difficile infection have increased remarkably in both hospital and community settings during the last two decades. The growth of infection may be caused by multiple factors including inappropriate antibiotic usage, poor standards of environmental cleanliness, changes in infection control practices, large outbreaks of C. difficile infection in hospitals, alteration of circulating strains of C. difficile, and spread of hypervirulent strains. Detection of high-risk populations could be helpful for prompt diagnosis and consequent treatment of patients suffering from C. difficile infection. Metronidazole and oral vancomycin are recommended antibiotics for the treatment of initial infection. Current treatments for C. difficile infection consist of supportive care, discontinuing the unnecessary antibiotic, and specific antimicrobial therapy. Moreover, novel approaches include fidaxomicin therapy, monoclonal antibodies, and fecal microbiota transplantation mediated therapy. Fecal microbiota transplantation has shown relevant efficacy to overcome C. difficile infection and reduce its recurrence.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...