Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Int J Mol Sci ; 21(23)2020 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-33260941

RESUMEN

Methylxanthines are a group of substances derived from the purine base xanthine with a methyl group at the nitrogen on position 3 and different residues at the nitrogen on position 1 and 7. They are widely consumed in nutrition and used as pharmaceuticals. Here we investigate the transcriptional regulation of 83 genes linked to Alzheimer's disease in the presence of five methylxanthines, including the most prominent naturally occurring methylxanthines-caffeine, theophylline and theobromine-and the synthetic methylxanthines pentoxifylline and propentofylline. Methylxanthine-regulated genes were found in pathways involved in processes including oxidative stress, lipid homeostasis, signal transduction, transcriptional regulation, as well as pathways involved in neuronal function. Interestingly, multivariate analysis revealed different or inverse effects on gene regulation for caffeine compared to the other methylxanthines, which was further substantiated by multiple comparison analysis, pointing out a distinct role for caffeine in gene regulation. Our results not only underline the beneficial effects of methylxanthines in the regulation of genes in neuroblastoma wild-type cells linked to neurodegenerative diseases in general, but also demonstrate that individual methylxanthines like caffeine mediate unique or inverse expression patterns. This suggests that the replacement of single methylxanthines by others could result in unexpected effects, which could not be anticipated by the comparison to other substances in this substance class.


Asunto(s)
Enfermedad de Alzheimer/genética , Cafeína/farmacología , Regulación de la Expresión Génica/efectos de los fármacos , Neuroblastoma/genética , Xantinas/farmacología , Línea Celular Tumoral , Genes Esenciales , Humanos , Pentoxifilina/farmacología , Análisis de Componente Principal , Teobromina/farmacología , Teofilina/farmacología , Transcripción Genética/efectos de los fármacos , Xantinas/química
2.
J Nucl Med ; 55(6): 891-7, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24752672

RESUMEN

UNLABELLED: (18)F-FDG PET/CT is effective in the assessment of therapy response. Changes in glucose uptake or tumor size are used as a measure. Tumor heterogeneity was found to be a promising predictive and prognostic factor. We investigated textural parameters for their predictive and prognostic capability in patients with rectal cancer using histopathology as the gold standard. In addition, a comparison to clinical outcome was performed. METHODS: Twenty-seven patients with rectal cancer underwent (18)F-FDG PET/CT before, 2 wk after the start, and 4 wk after the completion of neoadjuvant chemoradiotherapy. In all PET/CT scans, conventional parameters (tumor volume, diameter, maximum and mean standardized uptake values, and total lesion glycolysis [TLG]) and textural parameters (coefficient of variation [COV], skewness, and kurtosis) were determined to assess tumor heterogeneity. Values on pretherapeutic PET/CT as well as changes early in the course of therapy and after therapy were compared with histopathologic response. In addition, the prognostic value was assessed by correlation with time to progression and survival time. RESULTS: The COV showed a statistically significant capability to assess histopathologic response early in therapy (sensitivity, 68%; specificity, 88%) and after therapy (79% and 88%, respectively). Thereby, the COV had a higher area under the curve in receiver-operating-characteristic analysis than did any analyzed conventional parameter for early and late response assessment. The COV showed a statistically significant capability to evaluate disease progression and to predict survival, although the latter was not statistically significant. CONCLUSION: Tumor heterogeneity assessed by the COV, being superior to the investigated conventional parameters, is an important predictive factor in patients with rectal cancer. Furthermore, it can provide prognostic information. Therefore, its application is an important step for personalized treatment of rectal cancer.


Asunto(s)
Fluorodesoxiglucosa F18 , Imagen Multimodal , Tomografía de Emisión de Positrones , Neoplasias del Recto/patología , Neoplasias del Recto/terapia , Tomografía Computarizada por Rayos X , Quimioradioterapia Adyuvante , Femenino , Humanos , Estimación de Kaplan-Meier , Masculino , Terapia Neoadyuvante , Pronóstico , Curva ROC , Neoplasias del Recto/diagnóstico por imagen , Resultado del Tratamiento
3.
Inorg Chem ; 51(13): 7032-8, 2012 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-22702723

RESUMEN

Metal-free hemiporphyrazine (HpH(2)) is a notoriously insoluble material possessing interesting photophysical properties. Here we report the synthesis, structure, and photophysical properties of an octahedral zinc trans-ditriflate hemiporphyrazine complex "HpH(2)Zn(OTf)(2)" that contains a neutral hemiporphyrazine ligand. The photophysical properties of hemiporphyrazine are largely unaffected by introduction of zinc(II) triflate, but a dramatic increase in solubility is observed. HpH(2)Zn(OTf)(2) therefore provides a convenient model system to evaluate the impact of aggregation on the photophysical properties of hemiporphyrazine. Soluble aggregates and crystalline materials containing planar hemiporphyrazines exhibit relatively strong absorbance of visible light (450-600 nm) and red luminescence (600-700 nm). Hemiporphyrazine monohydrate (HpH(2)·H(2)O), in contrast, has a nonplanar "saddle-shaped" conformation that exhibits very little absorbance of visible light in solution or in the solid state. Upon photoexcitation at 380 nm, HpH(2)Zn(OTf)(2) and HpH(2) exhibit multiwavelength emissions centered at 450 and 650 nm. Emissions at 450 nm are highly anisotropic, while emissions at 650 nm are fully depolarized with respect to a plane-polarized excitation source. Taken together, our results suggest that excitonic coupling of aggregated and crystalline hemiporphyrazines results in increased absorbance and emission of visible light from S(0) ↔ S(1) transitions that are usually symmetry forbidden in isolated species. In contrast to previously proposed theories involving excited-state intramolecular proton transfer, we propose that the multiple-wavelength luminescent emissions of HpH(2)Zn(OTf)(2) and HpH(2) are due to emissive S(1) and S(2) states in aggregated and crystalline hemiporphyrazines. These results may provide a better understanding of the nonlinear optical properties of these materials in solution and in the solid state.

4.
Org Lett ; 12(1): 104-6, 2010 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-20035564

RESUMEN

An efficient method for the selective isotopic labeling of carboxylic acids is reported. By reacting an amino acid with excess carbodiimide and (18)OH(2), a kinetically enhanced multiple turnover reaction provides the (18)O-labeled product in high yield and excellent isotopic enrichment. This reaction is fully compatible with standard Fmoc, Boc, Trt, and OtBu protecting groups and provides a means to selectively label the alpha-carboxylic acids of functionalized amino acids with stable oxygen isotopes.


Asunto(s)
Aminoácidos/química , Ácidos Carboxílicos/química , Isótopos de Oxígeno/química , Marcaje Isotópico , Estructura Molecular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...