Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Polymers (Basel) ; 15(15)2023 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-37571088

RESUMEN

Polymers derived from natural raw materials have become of great interest due to their increased biodegradable features and possible biocompatibility. Our group has successfully synthesized and characterized polymers derived from D-mannose oligomer (M), 2-hydroxy propyl acrylate (HPA), and methacrylate (HPMA) in different weight ratios. Their biodegradation was studied in liquid media with pure Proteus mirabilis inoculum for the samples with the most sugar residue, and the results show that the methacrylate derivative M_HPMA1 lost about 50% of its weight during incubation. SEM/EDX techniques were employed to display the modifications of the samples during the biodegradation process. The glycopolymers were buried in garden soil, and the experiment proved that more than 40% of the weight of the M_HPA1 sample was lost during biodegradation, while the other samples encountered an average of about 32% weight loss. The biodegradation profile was fitted against linear and polynomial mathematical models, which enabled an estimate of about a year for the total degradation of the D-mannose glycopolymers sample in soil.

2.
Pharmaceuticals (Basel) ; 16(7)2023 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-37513852

RESUMEN

Origanum vulgare var. vulgare essential oil (OEO) is known as a natural product with multiple beneficial effects with application in dermatology. Oregano essential oil represents a potential natural therapeutic alternative for fibroepithelial polyps (FPs), commonly known as skin tags. Innovative formulations have been developed to improve the bioavailability and stability of essential oils. In this study, we aimed to evaluate the morphology of a polymeric-micelles-based hydrogel (OEO-PbH), the release and permeation profile of oregano essential oil, as well as to assess in vivo the potential effects on the degree of biocompatibility and the impact on angiogenesis in ovo, using a chick chorioallantoic membrane (CAM). Scanning electron microscopy (SEM) analysis indicated a regular aspect after the encapsulation process, while in vitro release studies showed a sustained release of the essential oil. None of the tested samples induced any irritation on the CAM and the limitation of the angiogenic process was noted. OEO-PbH, with a sustained release of OEO, potentially enhances the anti-angiogenic effect while being well tolerated and non-irritative by the vascularized CAM, especially on the blood vessels (BVs) in the presence of leptin treatment. This is the first evidence of in vivo antiangiogenic effects of a polymeric-micelle-loaded oregano essential oil, with further mechanistic insights for OEO-PbH formulation, involving leptin as a possible target. The findings suggest that the OEO-containing polymeric micelle hydrogel represents a potential future approach in the pathology of cutaneous FP and other angiogenesis-related conditions.

3.
Micromachines (Basel) ; 14(6)2023 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-37374698

RESUMEN

Over the past few decades, tactile sensors have become an emerging field of research with direct applications in the area of biomedical engineering. New types of tactile sensors, called magneto-tactile sensors, have recently been developed. The aim of our work was to create a low-cost composite whose electrical conductivity depends on mechanical compressions that can be finely tuned using a magnetic field for magneto-tactile sensor fabrication. For this purpose, 100% cotton fabric was impregnated with a magnetic liquid (EFH-1 type) based on light mineral oil and magnetite particles. The new composite was used to manufacture an electrical device. With the experimental installation described in this study, we measured the electrical resistance of an electrical device placed in a magnetic field in the absence or presence of uniform compressions. The effect of uniform compressions and the magnetic field was the induction of mechanical-magneto-elastic deformations and, as a result, variations in electrical conductivity. In a magnetic field with a flux density of 390 mT, in the absence of mechanical compression forces, a magnetic pressure of 5.36 kPa was generated, and the electrical conductivity increased by 400% compared to that of the composite in the absence of a magnetic field. Upon increasing the compression force to 9 N, in the absence of a magnetic field, the electrical conductivity increased by about 300% compared to that of the device in the absence of compression forces and a magnetic field. In the presence of a magnetic flux density of 390 mT, and when the compression force increased from 3 N to 9 N, the electrical conductivity increased by 2800%. These results suggest the new composite is a promising material for magneto-tactile sensors.

4.
Nanotechnology ; 34(34)2023 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-37253333

RESUMEN

Nanographene andα-cyclodextrin based sensors modified with gold nanoparticles and spheroidal copper were used to develop two stochastic sensors, which were then characterized and validated for the purpose of molecularly identifying and quantifying HER3 and HER4 in biological samples. In order to accomplish this goal, each of the stochastic sensors was incorporated in a nanoplatform. The two nanoplatforms were connected to a smartphone and recorded very low limits of determination (1 × 10-15g ml-1) and wide linear concentration ranges (1 × 10-15-1 × 10-8g ml-1) when a potential of 170 mV versus Ag/AgCl was applied. This allowed for the molecular identification and quantification of HER3 and HER4 in patients with gastric cancer, as well as in healthy individuals.


Asunto(s)
Ciclodextrinas , Nanopartículas del Metal , Neoplasias Gástricas , Humanos , Neoplasias Gástricas/diagnóstico , Receptor ErbB-3 , Oro
5.
Materials (Basel) ; 16(8)2023 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-37109803

RESUMEN

Glucosinolates-rich extracts of some Brassicaceae sources, such as broccoli, cabbage, black radish, rapeseed, and cauliflower, were obtained using an eco-friendly extraction method, in a microwave field, with 70% ethanol, and evaluated in order to establish their in vitro antioxidant activities and anticorrosion effects on steel material. The DPPH method and Folin-Ciocâlteu assay proved good antioxidant activity (remaining DPPH, 9.54-22.03%) and the content of total phenolics between 1008-1713 mg GAE/L for all tested extracts. The electrochemical measurements in 0.5 M H2SO4 showed that the extracts act as mixed-type inhibitors proving their ability to inhibit corrosion in a concentration-dependent manner, with a remarkable inhibition efficiency (92.05-98.33%) achieved for concentrated extracts of broccoli, cauliflower, and black radish. The weight loss experiments revealed that the inhibition efficiency decreased with an increase in temperature and time of exposure. The apparent activation energies, enthalpies, and entropies of the dissolution process were determined and discussed, and an inhibition mechanism was proposed. An SEM/EDX surface examination shows that the compounds from extracts may attach to the steel surface and produce a barrier layer. Meanwhile, the FT-IR spectra confirm bond formation between functional groups and the steel substrate.

6.
Materials (Basel) ; 15(22)2022 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-36431543

RESUMEN

Iron phosphate materials have attracted a lot of attention due to their potential as cathode materials for lithium-ion rechargeable batteries. It has been shown that lithium insertion or extraction depends on the Fe mixed valence and reduction or oxidation of the Fe ions' valences. In this paper, we report a new synthesis method for the Fe3(PO3OH)4(H2O)4 mixed valence iron phosphate. In addition, we perform temperature-dependent measurements of structural and physical properties in order to obtain an understanding of electronic-structural interplay in this compound. Scanning electron microscope images show needle-like single crystals of 50 µm to 200 µm length which are stable up to approximately 200 °C, as revealed by thermogravimetric analysis. The crystal structure of Fe3(PO3OH)4(H2O)4 single crystals has been determined in the temperature range of 90 K to 470 K. A monoclinic isostructural phase transition was found at ~213 K, with unit cell volume doubling in the low temperature phase. While the local environment of the Fe2+ ions does not change significantly across the structural phase transition, small antiphase rotations occur for the Fe3+ octahedra, implying some kind of electronic order. These results are corroborated by first principle calculations within density functional theory, which also point to ordering of the electronic degrees of freedom across the transition. The structural phase transition is confirmed by specific heat measurements. Moreover, hints of 3D antiferromagnetic ordering appear below ~11 K in the magnetic susceptibility measurements. Room temperature visible light absorption is consistent with the Fe2+/Fe3+ mixed valence.

7.
Biomedicines ; 10(7)2022 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-35885043

RESUMEN

The goal of this research was to design novel chloro-substituted salicylanilide derivatives and their ß-cyclodextrin complexes in order to obtain efficient antibacterial compounds and to demonstrate the beneficial role of complexation on the efficiency of these compounds. Thus, salicylanilide derivatives, esters, and hydrazides were obtained by microwave-assisted synthesis and their structure proven based on FTIR and NMR spectra. In order to improve water solubility, chemical and physical stability, and drug distribution through biological membranes, the inclusion complexes of the ethyl esters in ß-cyclodextrin were also obtained using kneading. Inclusion-complex characterization was accomplished by modern analytical methods, X-ray diffraction, SEM, TGA, FTIR, and UV-vis spectroscopy. The newly synthesized compounds were tested against some Gram-positive and Gram-negative bacteria. Antimicrobial tests revealed good activity on Gram-positive bacteria and no inhibition against Gram-negative strains. The MIC and MBC values for compounds derived from N-(2-chlorophenyl)-2-hydroxybenzamide were 0.125-1.0 mg/mL. N-(4-chlorophenyl)-2-hydroxybenzamide derivatives were found to be less active. The inclusion complexes generally behaved similarly to the guest compounds, and antibacterial activity was not been altered by complexation.

8.
Anal Bioanal Chem ; 414(23): 6813-6824, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35879426

RESUMEN

Ultrasensitive determination of sorbic acid in food is essential for the assessment of the food quality. Therefore, two sensors based on nanographene decorated with gold nanoparticle paste modified with metal porphyrins (Zn protoporphyrin IX, and 2,3,7,8,12,13,17,18 octaethyl, 21H, 23H-porphirine Mn(III) chloride) were proposed for the determination of sorbic acid in food (bakery products and mayonnaise). Square-wave voltammetry was used for the characterization and validation of the proposed sensors. Response characteristics showed that the limits of detection for both sensors were 0.33 µmol L-1 while the limits of quantification were 1.00 µmol L-1. Both sensors can be used for the determination of sorbic acid in the concentration range 1-1000 µmol L-1, the linear concentration range making them appropriate for the assay of sorbic acid in food. The highest sensitivity (0.35 nA/µmol L-1) was recorded when the sensor based on 2,3,7,8,12,13,17,18 octaethyl, 21H, 23H-porphirine Mn(III) chloride was used, proving the higher electrocatalytic effect of this electrocatalyst versus the one of the Zn protoporphyrin IX. High recoveries (values higher than 95.00%) and low RSD (%) values (lower than 5.00%) were recorded for both sensors when used for the determination of sorbic acid in bread and mayonnaise, proving the high reliability of the proposed sensors and method.


Asunto(s)
Nanopartículas del Metal , Ácido Sórbico , Cloruros , Técnicas Electroquímicas/métodos , Oro/química , Nanopartículas del Metal/química , Reproducibilidad de los Resultados
9.
Materials (Basel) ; 15(6)2022 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-35329761

RESUMEN

Understanding the electrical conduction and dielectric polarization properties of elastomer-based composites is important for the design of flexible and elastic electronic devices and circuits. Five samples were manufactured by mixing silicone rubber (RTV-530) with Al particles in different volume fractions, x equal to 0%, 0.5%, 1%, 2.5% and 5.1%. Using the complex impedance measurements, the electric modulus, M, the electrical conductivity, σ, and the dielectric permittivity, ε, over the frequency range 100 Hz-200 kHz were analyzed. The electrical conductivity spectrum, σ(f), follows the Jonscher universal law and the DC conductivity of the samples, σDC, increases from 2.637·10-8 S/m to 5.725·10-8 S/m, with increasing x from, 0 to 5.1%. The conduction process was analyzed in terms of Mott's variable-range-hopping (VRH) model. The hopping distance of the charge carriers, Rh decreases with increasing x, from 7.30 nm (for x = 0) to 5.92 nm (for x = 5.1%). The frequency dependence of permittivity, ε(f) = ε'(f) - iε″(f), reveals a relaxation process with the maximum of ε″(f) shifting from 301 Hz to 385 Hz and values of ε'(f) increasing with the increase of x.

10.
Nanomaterials (Basel) ; 12(3)2022 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-35159804

RESUMEN

Two three-dimensional (3D) stochastic microsensors based on immobilization of protoporphyrin IX (PIX) in single-walled carbon nanotubes (SWCNT) and multi-walled carbon nanotubes (MWCNT) decorated with copper (Cu) and gold (Au) nanoparticles were designed and used for the molecular recognition of isocitrate dehydrogenase 1 (IDH1) and isocitrate dehydrogenase 2 (IDH2) in biological samples (brain tumor tissues, whole blood). The linear concentration ranges obtained for the molecular recognition and quantification of IDH1 and IDH2 were: IDH1 (1 × 10-5-1 × 102 ng mL-1) and IDH2 (5 × 10-8 - 5 × 102 ng mL-1). The limits of quantification obtained using the proposed microsensors were: 10 fg mL-1 for IDH1 and 5 × 10-3 fg mL-1 for IDH2. The highest sensitivities were obtained for the microsensor based on MWCNT. High recoveries versus enzyme-linked immunosorbent assay (ELISA) standard method were recorded for the assays of IDH1 and IDH2, all values being higher than 99.00%, with relative standard deviations (RSD) lower than 0.10%.

11.
Sensors (Basel) ; 23(1)2022 Dec 29.
Artículo en Inglés | MEDLINE | ID: mdl-36616942

RESUMEN

Vitamins are essential for sustaining daily activities and perform crucial roles in metabolism, such as preventing vascular events and delaying the development of diabetic nephropathy. The ultrasensitive assessment of thiamine in foods is required for food quality evaluation. A mini-platform utilizing two 3D sensors based on nanographene and gold nanoparticles paste modified with protoporphyrin IX and protoporphyrin IX cobalt chloride is proposed for the detection of thiamine in blueberry syrup, multivitamin tablets, water, and a biological sample (urine). Differential pulse voltammetry was utilized for the characterization and validation of the suggested sensors. The sensor modified with protoporphyrin IX has a detection limit of 3.0 × 10-13 mol L-1 and a quantification limit of 1.0 × 10-12 mol L-1, whereas the sensor modified with protoporphyrin IX cobalt chloride has detection and quantification limits of 3.0 × 10-12 and 1.0 × 10-11 mol L-1, respectively. High recoveries (values greater than 95.00%) and low RSD (%) values (less than 5.00%) are recorded for both 3D sensors when used for the determination of thiamine in blueberry syrup, multivitamin tablets, water, and urine, demonstrating the 3D sensors' and suggested method's high reliability.


Asunto(s)
Nanopartículas del Metal , Tiamina , Oro , Reproducibilidad de los Resultados , Ácido Ascórbico , Comprimidos , Agua , Técnicas Electroquímicas , Electrodos , Límite de Detección
12.
Polymers (Basel) ; 13(20)2021 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-34685355

RESUMEN

The present study aimed to prepare and evaluate patches for the controlled release of lidocaine/acyclovir and the binary mixture between lidocaine: acyclovir in the oral cavity. Mucoside adhesive patches containing 12.5 mg/cm2 lidocaine/acyclovir or binary mixture base were developed by a solvent casting method using sodium alginate, polyvinylpyrrolidone (PVP), glycerol (Gly), polyvinyl alcohol (PVA), and Span 80 (S). Binary mixtures between all components were prepared before the patches' formulation in order to be able to check the substance compatibility. All formulated patches were analyzed by FT-IR spectroscopy, UV-Vis analysis, thermogravimetry (TGA), and scanning electron microscopy (SEM). FT-IR and TGA analyses were also used to check compatibility between binary mixtures. The study establishes which membranes are indicated in the controlled release of lidocaine/acyclovir and those membranes that contain both active principles. Membranes based on alginate, PVP, and PVA can be used to release the active substance. Simultaneously, membranes with SPAN used as a gelling agent were excluded due to the interaction with the active substance. The following membranes composition have been chosen for lidocaine release: Alginate:Gly and Alginate:Gly:PVP. At the same time, the following membrane compositions were chosen for acyclovir membranes: Alginate:Gly:PVP and Alginate:PVA:Gly. Both active substances could be included to obtain a homogeneous distribution only in the membrane based on alginate, PVA, and Gly.

13.
Nanomaterials (Basel) ; 11(1)2021 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-33467696

RESUMEN

Pharmaceuticals and pesticides are emerging contaminants problematic in the aquatic environment because of their adverse effects on aquatic life and humans. In order to remove them from water, photocatalysis is one of the most modern technologies to be used. First, newly synthesized photocatalysts were successfully prepared using a sol-gel method and characterized by different techniques (XRD, FTIR, UV/Vis, BET and SEM/EDX). The photocatalytic properties of TiO2, ZnO and MgO nanoparticles were examined according to their removal from water for two antibiotics (ciprofloxacin and ceftriaxone) and two herbicides (tembotrione and fluroxypyr) exposed to UV/simulated sunlight (SS). TiO2 proved to be the most efficient nanopowder under UV and SS. Addition of (NH4)2S2O8 led to the faster removal of both antibiotics and herbicide fluroxypyr. The main intermediates were separated and identified for the herbicides and antibiotic ciprofloxacin. Finally, the toxicity of each emerging pollutant mixture and formed intermediates was assessed on wheat germination and biomass production.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...