Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 92
Filtrar
Más filtros










Intervalo de año de publicación
1.
ACS Synth Biol ; 13(5): 1523-1536, 2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38662967

RESUMEN

Streptomyces spp. are "nature's antibiotic factories" that produce valuable bioactive metabolites, such as the cytotoxic anthracycline polyketides. While the anthracyclines have hundreds of natural and chemically synthesized analogues, much of the chemical diversity stems from enzymatic modifications to the saccharide chains and, to a lesser extent, from alterations to the core scaffold. Previous work has resulted in the generation of a BioBricks synthetic biology toolbox in Streptomyces coelicolor M1152ΔmatAB that could produce aklavinone, 9-epi-aklavinone, auramycinone, and nogalamycinone. In this work, we extended the platform to generate oxidatively modified analogues via two crucial strategies. (i) We swapped the ketoreductase and first-ring cyclase enzymes for the aromatase cyclase from the mithramycin biosynthetic pathway in our polyketide synthase (PKS) cassettes to generate 2-hydroxylated analogues. (ii) Next, we engineered several multioxygenase cassettes to catalyze 11-hydroxylation, 1-hydroxylation, 10-hydroxylation, 10-decarboxylation, and 4-hydroxyl regioisomerization. We also developed improved plasmid vectors and S. coelicolor M1152ΔmatAB expression hosts to produce anthracyclinones. This work sets the stage for the combinatorial biosynthesis of bespoke anthracyclines using recombinant Streptomyces spp. hosts.


Asunto(s)
Antraciclinas , Sintasas Poliquetidas , Streptomyces coelicolor , Sintasas Poliquetidas/metabolismo , Sintasas Poliquetidas/genética , Antraciclinas/metabolismo , Streptomyces coelicolor/metabolismo , Streptomyces coelicolor/genética , Streptomyces/metabolismo , Streptomyces/genética , Vías Biosintéticas/genética , Hidroxilación , Antibacterianos/biosíntesis , Antibacterianos/metabolismo , Antibacterianos/química
2.
J Nat Prod ; 87(4): 798-809, 2024 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-38412432

RESUMEN

Structural and functional studies of the carminomycin 4-O-methyltransferase DnrK are described, with an emphasis on interrogating the acceptor substrate scope of DnrK. Specifically, the evaluation of 100 structurally and functionally diverse natural products and natural product mimetics revealed an array of pharmacophores as productive DnrK substrates. Representative newly identified DnrK substrates from this study included anthracyclines, angucyclines, anthraquinone-fused enediynes, flavonoids, pyranonaphthoquinones, and polyketides. The ligand-bound structure of DnrK bound to a non-native fluorescent hydroxycoumarin acceptor, 4-methylumbelliferone, along with corresponding DnrK kinetic parameters for 4-methylumbelliferone and native acceptor carminomycin are also reported for the first time. The demonstrated unique permissivity of DnrK highlights the potential for DnrK as a new tool in future biocatalytic and/or strain engineering applications. In addition, the comparative bioactivity assessment (cancer cell line cytotoxicity, 4E-BP1 phosphorylation, and axolotl embryo tail regeneration) of a select set of DnrK substrates/products highlights the ability of anthracycline 4-O-methylation to dictate diverse functional outcomes.


Asunto(s)
Metiltransferasas , Metiltransferasas/metabolismo , Metiltransferasas/química , Estructura Molecular , Productos Biológicos/farmacología , Productos Biológicos/química , Humanos , Antraciclinas/química , Antraciclinas/farmacología , Especificidad por Sustrato
3.
Adv Life Sci ; 10(2): 200-209, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38094851

RESUMEN

Background: Plant-derived endophytic actinobacteria are the center of attention due to their capacity to produce diverse antimicrobial and anticancer compounds and their metabolites influence plant growth. Methods: In this study, 40 endophytic actinobacteria strains were isolated from the roots of eight medicinal plants used as folk medicine in South Asian region. The isolates were characterized morphologically, biochemically and physiologically and the genus level identification of the selected strains was done by 16SrRNA gene sequencing. In small scale cultivation (50ml broth), the isolates were grown in A-medium to prepare the crude extracts. These crude extracts were subsequently evaluated for their antimicrobial, anticancer and antioxidant activity and the metabolomics profile of each of the extract was determined by TLC and HPLC-UV/MS. Results: The taxonomic studies showed that the isolates belong to the group actinobacteria based on their morphological and physiological characteristics and the 16SrRNA gene sequencing of the selected strains identified the genera including Streptomyces, Micromonospora and Nocardia. Cumulatively,53% of extracts exhibited anti-Gram-(+) activity,47% exhibited anti-Gram-(-) activity,32% exhibited antifungal activity and 30% were cytotoxic to PC3 and A549 cancer cell lines and most of the extracts have shown antioxidant activity greater than 50%. The metabolomics analysis predicted the presence of an array of low molecular weight metabolites and indicated the promising isolates in collection for further studies for novel bioactive metabolite isolation and structure elucidation. Conclusion: Overall the study provides an overview of the endophytic actinobacteria residing in the roots of the selected medicinal plants prevalent in south Asian region and their potential to produce the medicinally and biotechnologically useful compounds.

4.
ACS Omega ; 8(23): 21237-21253, 2023 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-37332790

RESUMEN

Tetracenomycins and elloramycins are polyketide natural products produced by several actinomycetes that exhibit antibacterial and anticancer activities. They inhibit ribosomal translation by binding in the polypeptide exit channel of the large ribosomal subunit. The tetracenomycins and elloramycins are typified by a shared oxidatively modified linear decaketide core, yet they are distinguished by the extent of O-methylation and the presence of a 2',3',4'-tri-O-methyl-α-l-rhamnose appended at the 8-position of elloramycin. The transfer of the TDP-l-rhamnose donor to the 8-demethyl-tetracenomycin C aglycone acceptor is catalyzed by the promiscuous glycosyltransferase ElmGT. ElmGT exhibits remarkable flexibility toward transfer of many TDP-deoxysugar substrates to 8-demethyltetracenomycin C, including TDP-2,6-dideoxysugars, TDP-2,3,6-trideoxysugars, and methyl-branched deoxysugars in both d- and l-configurations. Previously, we developed an improved host, Streptomyces coelicolor M1146::cos16F4iE, which is a stable integrant harboring the required genes for 8-demethyltetracenomycin C biosynthesis and expression of ElmGT. In this work, we developed BioBricks gene cassettes for the metabolic engineering of deoxysugar biosynthesis in Streptomyces spp. As a proof of concept, we used the BioBricks expression platform to engineer biosynthesis for d-configured TDP-deoxysugars, including known compounds 8-O-d-glucosyl-tetracenomycin C, 8-O-d-olivosyl-tetracenomycin C, 8-O-d-mycarosyl-tetracenomycin C, and 8-O-d-digitoxosyl-tetracenomycin C. In addition, we generated four new tetracenomycins including one modified with a ketosugar, 8-O-4'-keto-d-digitoxosyl-tetracenomycin C, and three modified with 6-deoxysugars, including 8-O-d-fucosyl-tetracenomycin C, 8-O-d-allosyl-tetracenomycin C, and 8-O-d-quinovosyl-tetracenomycin C. Our work demonstrates the feasibility of BioBricks cloning, with the ability to recycle intermediate constructs, for the rapid assembly of diverse carbohydrate pathways and glycodiversification of a variety of natural products.

5.
Planta Med ; 89(12): 1178-1189, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36977488

RESUMEN

Chemical investigation of the endophyte Pseudofusicoccum stromaticum CMRP4328 isolated from the medicinal plant Stryphnodendron adstringens yielded ten compounds, including two new dihydrochromones, paecilins Q (1: ) and R (2: ). The antifungal activity of the isolated metabolites was assessed against an important citrus pathogen, Phyllosticta citricarpa. Cytochalasin H (6: ) (78.3%), phomoxanthone A (3: ) (70.2%), phomoxanthone B (4: ) (63.1%), and paecilin Q (1: ) (50.5%) decreased in vitro the number of pycnidia produced by P. citricarpa, which are responsible for the disease dissemination in orchards. In addition, compounds 3: and 6: inhibited the development of citrus black spot symptoms in citrus fruits. Cytochalasin H (6: ) and one of the new compounds, paecilin Q (1: ), appear particularly promising, as they showed strong activity against this citrus pathogen, and low or no cytotoxic activity. The strain CMRP4328 of P. stromaticum and its metabolites deserve further investigation for the control of citrus black spot disease.


Asunto(s)
Antifúngicos , Citrus , Antifúngicos/farmacología , Enfermedades de las Plantas/prevención & control , Enfermedades de las Plantas/microbiología , Endófitos
6.
BMC Microbiol ; 23(1): 69, 2023 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-36922786

RESUMEN

BACKGROUND: Bioprospecting of actinobacteria isolated from Kubuqi desert, China for antibacterial, antifungal and cytotoxic metabolites production and their structure elucidation. RESULTS: A total of 100 actinobacteria strains were selectively isolated from Kubuqi desert, Inner Mongolia, China. The taxonomic characterization revealed Streptomyces as the predominant genus comprising 37 different species, along with the rare actinobacterial genus Lentzea. The methanolic extracts of 60.8% of strains exhibited potent antimicrobial activities against Staphylococcus aureus, Micrococcus luteus, Bacillus subtilis, Escherichia coli, Salmonella enterica, Saccharomyces cerevisiae and high to mild in vitro cytotoxicity against PC3 (prostate cancer) and A549 (lung carcinoma) cell lines. The metabolomics analysis by TLC, HPLC-UV/vis, HPLC-MS and NMR showed the presence of compounds with molecular weights ranging from 100 to 1000 Da. The scale-up fermentation of the prioritized anti-Gram-negative strain PU-KB10-4 (Streptomyces griseoviridis), yielded three pure compounds including; griseoviridin (1; 42.0 mgL- 1) with 20 fold increased production as compared to previous reports and its crystal structure as monohydrate form is herein reported for the first time, mitomycin C (2; 0.3 mgL- 1) and a new bacterial metabolite 4-hydroxycinnamide (3; 0.59 mgL- 1). CONCLUSIONS: This is the first report of the bioprospecting and exploration of actinobacteria from Kubuqi desert and the metabolite 4-hydroxycinnamide (3) is first time isolated from a bacterial source. This study demonstrated that actinobacteria from Kubuqi desert are a potential source of novel bioactive natural products. Underexplored harsh environments like the Kubuqi desert may harbor a wider diversity of actinobacteria, particularly Streptomyces, which produce unique metabolites and are an intriguing source to develop medicinally valuable natural products.


Asunto(s)
Actinobacteria , Productos Biológicos , Streptomyces , Mitomicina/metabolismo , Bioprospección , Filogenia , Antibacterianos/química , Productos Biológicos/farmacología
7.
Metabolites ; 13(1)2023 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-36677018

RESUMEN

Leishmaniasis is a group of infectious diseases caused by Leishmania protozoa. The ineffectiveness, high toxicity, and/or parasite resistance of the currently available antileishmanial drugs has created an urgent need for safe and effective leishmaniasis treatment. Currently, the molecular-docking technique is used to predict the proper conformations of small-molecule ligands and the strength of the contact between a protein and a ligand, and the majority of research for the development of new drugs is centered on this type of prediction. Leishmania N-myristoyltransferase (NMT) has been shown to be a reliable therapeutic target for investigating new anti-leishmanial molecules through this kind of virtual screening. Natural products provide an incredible source of affordable chemical scaffolds that serve in the development of effective drugs. Withania somnifera leaves, roots, and fruits have been shown to contain withanolide and other phytomolecules that are efficient anti-protozoal agents against Malaria, Trypanosoma, and Leishmania spp. Through a review of previously reported compounds from W. somnifera-afforded 35 alkaloid, phenolic, and steroid compounds and 132 withanolides/derivatives, typical of the Withania genus. These compounds were subjected to molecular docking screening and molecular dynamics against L. major NMT. Calycopteretin-3-rutinoside and withanoside IX showed the highest affinity and binding stability to L. major NMT, implying that these compounds could be used as antileishmanial drugs and/or as a scaffold for the design of related parasite NMT inhibitors with markedly enhanced binding affinity.

8.
ACS Synth Biol ; 11(12): 4193-4209, 2022 12 16.
Artículo en Inglés | MEDLINE | ID: mdl-36378506

RESUMEN

Actinomycetes produce a variety of clinically indispensable molecules, such as antineoplastic anthracyclines. However, the actinomycetes are hindered in their further development as genetically engineered hosts for the synthesis of new anthracycline analogues due to their slow growth kinetics associated with their mycelial life cycle and the lack of a comprehensive genetic toolbox for combinatorial biosynthesis. In this report, we tackled both issues via the development of the BIOPOLYMER (BIOBricks POLYketide Metabolic EngineeRing) toolbox: a comprehensive synthetic biology toolbox consisting of engineered strains, promoters, vectors, and biosynthetic genes for the synthesis of anthracyclinones. An improved derivative of the production host Streptomyces coelicolor M1152 was created by deleting the matAB gene cluster that specifies extracellular poly-ß-1,6-N-acetylglucosamine (PNAG). This resulted in a loss of mycelial aggregation, with improved biomass accumulation and anthracyclinone production. We then leveraged BIOPOLYMER to engineer four distinct anthracyclinone pathways, identifying optimal combinations of promoters, genes, and vectors to produce aklavinone, 9-epi-aklavinone, auramycinone, and nogalamycinone at titers between 15-20 mg/L. Optimization of nogalamycinone production strains resulted in titers of 103 mg/L. We structurally characterized six anthracyclinone products from fermentations, including new compounds 9,10-seco-7-deoxy-nogalamycinone and 4-O-ß-d-glucosyl-nogalamycinone. Lastly, we tested the antiproliferative activity of the anthracyclinones in a mammalian cancer cell viability assay, in which nogalamycinone, auramycinone, and aklavinone exhibited moderate cytotoxicity against several cancer cell lines. We envision that BIOPOLYMER will serve as a foundational platform technology for the synthesis of designer anthracycline analogues.


Asunto(s)
Policétidos , Streptomyces coelicolor , Streptomyces , Animales , Streptomyces coelicolor/genética , Streptomyces coelicolor/metabolismo , Ingeniería Metabólica , Streptomyces/genética , Antraciclinas/metabolismo , Antibióticos Antineoplásicos/metabolismo , Policétidos/metabolismo , Familia de Multigenes , Mamíferos/genética
9.
Accid Anal Prev ; 178: 106873, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36306720

RESUMEN

A significant proportion of global road crashes are attributed to unsafe driving behaviors. The current study aimed to explore potential differences in driving behaviors across experienced and novice drivers using two separate approaches; a questionnaire study and an instrumented vehicle study (IVS). The analysis of 260 questionnaires and 1,372 traffic interactions within the IVS revelated that driving experience affects driving performance for different driving tasks. Factor analysis of the questionnaire data revealed the impact of driving errors, lapses, violations, and aggressive violations on the behavior of novice and experienced drivers. Behavioral models of novice and experienced drivers encountering other road users were determined using binary logistic regression. The results showed that novice drivers were more likely to engage in driving violations while experienced drivers were more likely to engage in aggressive violations. Unauthorized speeding, zigzag movements, using a mobile phone while driving, and unauthorized overtaking on roads were the most frequent driving violations by novice drivers. The most frequent aggressive violations by experienced drivers were tempting other drivers to create a race and chasing other drivers. These findings may be used as a framework to facilitate safer driving behaviors by reducing errors, lapses, violations and aggressive violations, and facilitating safety-promoting attitudes.


Asunto(s)
Accidentes de Tránsito , Conducción de Automóvil , Humanos , Autoinforme , Accidentes de Tránsito/prevención & control , Encuestas y Cuestionarios , Análisis Factorial , Actitud
10.
Mar Drugs ; 20(5)2022 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-35621955

RESUMEN

Natural products continue to be a major inspiration and untapped resource for bioactive drug leads/probes [...].


Asunto(s)
Productos Biológicos , Productos Biológicos/farmacología
12.
Biotechnol Rep (Amst) ; 33: e00628, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35036335

RESUMEN

We report the isolation and characterization of five polyketides [alternariol (1), alternariol-9-methyl ether (2), altertoxin I (3), altertoxin II (4) and tenuazonic acid (5)] from the marine endophytic Alternaria sp. LV52 derived from Cystoseira tamariscifolia, collected from the Red Sea at Nabq-Bay, Egypt. The chemical structures of compounds 1-5 were identified by extensive 1D, 2D NMR, and HR mass measurements. Isolation and phenotypic and genotypic characterization of the producing fungus is reported. The antimicrobial activity of the produced extract and derived compounds was examined against a panel of test organisms. In addition, an in vitro cytotoxic activity of 1-5 was performed against diverse cancer cell lines: HEPG2, HELA, A549 and PC3, revealing that compounds 2 and 4 are potentially cytotoxic against A549 and PC3 with EC50 of 0.73 µg/ml (2.69 µM) and 0.17 µg/ml (0.64 µM) for 2, and 0.40 µg/ml (1.15 µM) and 0.12 µg/ml (0.33 µM) for 4, respectively.

13.
Mar Drugs ; 19(12)2021 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-34940714

RESUMEN

Chemical investigation of the ethyl acetate extract from the marine-derived Streptomyces sp. isolate B1848 resulted in three new isoquinolinequinone derivatives, the mansouramycins E-G (1a-3a), in addition to the previously reported mansouramycins A (5) and D (6). Their structures were elucidated by computer-assisted interpretation of 1D and 2D NMR spectra, high-resolution mass spectrometry, and by comparison with related compounds. Cytotoxicity profiling of the mansouramycins in a panel of up to 36 tumor cell lines indicated a significant cytotoxicity and good tumor selectivity for mansouramycin F (2a), while the activity profile of E (1a) was less attractive.


Asunto(s)
Antineoplásicos/farmacología , Isoquinolinas/farmacología , Streptomyces , Animales , Antineoplásicos/química , Organismos Acuáticos , Línea Celular Tumoral/efectos de los fármacos , Humanos , Isoquinolinas/química , Relación Estructura-Actividad
14.
Front Microbiol ; 12: 714750, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34539608

RESUMEN

Plant diseases caused by phytopathogens are responsible for significant crop losses worldwide. Resistance induction and biological control have been exploited in agriculture due to their enormous potential. In this study, we investigated the antimicrobial potential of endophytic fungi of leaves and petioles of medicinal plants Vochysia divergens and Stryphnodendron adstringens located in two regions of high diversity in Brazil, Pantanal, and Cerrado, respectively. We recovered 1,304 fungal isolates and based on the characteristics of the culture, were assigned to 159 phenotypes. One isolate was selected as representative of each phenotype and studied for antimicrobial activity against phytopathogens. Isolates with better biological activities were identified based on DNA sequences and phylogenetic analyzes. Among the 159 representative isolates, extracts from 12 endophytes that inhibited the mycelial growth (IG) of Colletotrichum abscissum (≥40%) were selected to expand the antimicrobial analysis. The minimum inhibitory concentrations (MIC) of the extracts were determined against citrus pathogens, C. abscissum, Phyllosticta citricarpa and Xanthomonas citri subsp. citri and the maize pathogen Fusarium graminearum. The highest activity against C. abscissum were from extracts of Pseudofusicoccum stromaticum CMRP4328 (IG: 83% and MIC: 40 µg/mL) and Diaporthe vochysiae CMRP4322 (IG: 75% and MIC: 1 µg/mL), both extracts also inhibited the development of post-bloom fruit drop symptoms in citrus flowers. The extracts were promising in inhibiting the mycelial growth of P. citricarpa and reducing the production of pycnidia in citrus leaves. Among the isolates that showed activity, the genus Diaporthe was the most common, including the new species D. cerradensis described in this study. In addition, high performance liquid chromatography, UV detection, and mass spectrometry and thin layer chromatography analyzes of extracts produced by endophytes that showed high activity, indicated D. vochysiae CMRP4322 and P. stromaticum CMRP4328 as promising strains that produce new bioactive natural products. We report here the capacity of endophytic fungi of medicinal plants to produce secondary metabolites with biological activities against phytopathogenic fungi and bacteria. The description of the new species D. cerradensis, reinforces the ability of medicinal plants found in Brazil to host a diverse group of fungi with biotechnological potential.

15.
Curr Microbiol ; 78(8): 3044-3057, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34125273

RESUMEN

Actinobacteria have proven themselves as the major producers of bioactive compounds with wide applications. In this study, 35 actinobacteria strains were isolated from soil samples collected from the Himalayan mountains region in Pakistan. The isolated strains were identified by polyphasic taxonomy and were prioritized based on biological and chemical screening to identify the strains with ability to produce inimitable metabolites. The biological screening included antimicrobial activity against Staphylococcus aureus, Micrococcus luteus, Salmonella enterica, Escherichia coli, Mycobacterium aurum, and Bacillus subtilis and anticancer activity using human cancer cell lines PC3 and A549. For chemical screening, methanolic extracts were investigated using TLC, HPLC-UV/MS. The actinobacteria strain PU-MM93 was selected for scale-up fermentation based on its unique chemical profile and cytotoxicity (50-60% growth inhibition) against PC3 and A549 cell lines. The scale-up fermentation of PU-MM93, followed by purification and structure elucidation of compounds revealed this strain as a promising producer of the cytotoxic anthracycline aranciamycin and aglycone SM-173-B along with the potent neuroprotective carboxamide oxachelin C. Other interesting metabolites produced include taurocholic acid as first report herein from microbial origin, pactamycate and cyclo(L-Pro-L-Leu). The study suggested exploring more bioactive microorganisms from the untapped Himalayan region in Pakistan, which can produce commercially significant compounds.


Asunto(s)
Actinobacteria , Antibacterianos/farmacología , Humanos , Metabolómica , Pruebas de Sensibilidad Microbiana , Mycobacteriaceae , Pakistán
16.
J Nat Prod ; 84(7): 1930-1940, 2021 07 23.
Artículo en Inglés | MEDLINE | ID: mdl-34170698

RESUMEN

Himalaquinones A-G, seven new anthraquinone-derived metabolites, were obtained from the Himalayan-based Streptomyces sp. PU-MM59. The chemical structures of the new compounds were identified based on cumulative analyses of HRESIMS and NMR spectra. Himalaquinones A-F were determined to be unique anthraquinones that contained unusual C-4a 3-methylbut-3-enoic acid aromatic substitutions, while himalaquinone G was identified as a new 5,6-dihydrodiol-bearing angucyclinone. Comparative bioactivity assessment (antimicrobial, cancer cell line cytotoxicity, impact on 4E-BP1 phosphorylation, and effect on axolotl embryo tail regeneration) revealed cytotoxic landomycin and saquayamycin analogues to inhibit 4E-BP1p and inhibit regeneration. In contrast, himalaquinone G, while also cytotoxic and a regeneration inhibitor, did not affect 4E-BP1p status at the doses tested. As such, this work implicates a unique mechanism for himalaquinone G and possibly other 5,6-dihydrodiol-bearing angucyclinones.


Asunto(s)
Antraquinonas/farmacología , Antineoplásicos/farmacología , Streptomyces/química , Ambystoma mexicanum , Aminoglicósidos/aislamiento & purificación , Aminoglicósidos/farmacología , Animales , Antraquinonas/aislamiento & purificación , Antineoplásicos/aislamiento & purificación , Línea Celular Tumoral , Humanos , Pruebas de Sensibilidad Microbiana , Estructura Molecular , Pakistán , Microbiología del Suelo
17.
Accid Anal Prev ; 157: 106166, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-33962351

RESUMEN

Pedestrians being the most vulnerable road users account for a large proportion of injuries and fatalities from road traffic crashes. Pedestrians are involved in around one-third of the whole fatalities coming from the road traffic crashes in the state of Qatar. In areas with uncontrolled midblock crosswalks, it is very crucial to improve drivers' alertness and yielding behavior. The objective of this driving simulator study is to investigate the impact of pedestrian detection strategies and pavement markings on driving behavior at high-speed uncontrolled crosswalks. To this end, an untreated condition (i.e. Control) was compared with three treatment conditions. The three treated conditions included two detection strategies, i.e., advance variable message sign (VMS) and LED lights, and road markings with pedestrian encircled. Each condition was tested with a yield/stop controlled marked crosswalk for two situations, i.e. with vs. without a pedestrian present. The experiment was conducted using the driving simulator at Qatar University. In total, 67 volunteers possessing a valid Qatari driving license participated in the study. Different analyses were conducted on vehicle-pedestrian interactions, driving speed, variations in acceleration/deceleration and lateral position. The results showed that both the LED and VMS conditions were helpful in increasing yielding rates up to 98.4 % and reducing the vehicle-pedestrian conflicts significantly. Furthermore, both treatments were effective in motivating drivers to reduce vehicle speed in advance. Considering the findings of this study, we recommend LED and VMS conditions as potentially effective solutions to improve safety at yield/stop controlled crosswalks.


Asunto(s)
Conducción de Automóvil , Peatones , Accidentes de Tránsito/prevención & control , Humanos , Qatar , Seguridad
18.
Blood ; 137(1): 20-28, 2021 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-33410896

RESUMEN

Legacy data show that ∼40% of children with acute lymphoblastic leukemia (ALL) were cured with limited antimetabolite-based chemotherapy regimens. However, identifying patients with very-low-risk (VLR) ALL remains imprecise. Patients selected based on a combination of presenting features and a minimal residual disease (MRD) level <0.01% on day 19 of induction therapy had excellent outcomes with low-intensity treatment. We investigated the impact of MRD levels between 0.001% and <0.01% early in remission induction on the outcome of VLR ALL treated with a low-intensity regimen. Between October of 2011 and September of 2015, 200 consecutive patients with B-precursor ALL with favorable clinicopathologic features and MRD levels <0.01%, as assessed by flow cytometry in the bone marrow on day 19 and at the end of induction therapy, received reduced-intensity therapy. The 5-year event-free survival was 89.5% (± 2.2% standard error [SE]), and the overall survival was 95.5% (± 1.5% SE). The 5-year cumulative incidence of relapse (CIR) was 7% (95% confidence interval, 4-11%). MRD levels were between 0.001% and <0.01% on day 19 in 29 patients. These patients had a 5-year CIR that was significantly higher than that of patients with undetectable residual leukemia (17.2% ± 7.2% vs 5.3% ± 1.7%, respectively; P = .02). Our study shows that children with VLR ALL can be treated successfully with decreased-intensity therapy, and it suggests that the classification criteria for VLR can be further refined by using a more sensitive MRD assay.


Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica/administración & dosificación , Neoplasia Residual/patología , Leucemia-Linfoma Linfoblástico de Células Precursoras B/tratamiento farmacológico , Leucemia-Linfoma Linfoblástico de Células Precursoras B/patología , Niño , Preescolar , Femenino , Humanos , Lactante , Masculino , Inducción de Remisión/métodos
19.
Green Chem Lett Rev ; 14(4): 578-599, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35821884

RESUMEN

A metal-free, atom-economy and simple work-up domino amination-Knoevenagel condensation approach to construct new coumarin analogous (4a-f and 8a-e) was described. Further, new formyl (5a,d-f) and nitro (9a,d-f) coumarin derivatives were synthesized via C-N coupling reaction of various cyclic secondary amines and 4-chloro-3-(formyl-/nitro)coumarins (1a,c), respectively. The confirmed compounds were screened for their in vitro anti-proliferative activity against KB-3-1, A549 and PC3 human cancer cell lines using resazurin cellular-based assay. Among them, coumarin derivatives 4e and 8e displayed the best anti-cervical cancer potency (KB-3-1) with IC50 values of 15.5 ± 3.54 and 21 ± 4.24 µM, respectively. Also, 4e showed the most promising cytotoxicity toward A549 with IC50 value of 12.94 ± 1.51 µM. As well, 9d presented a more significant impact of potency against PC3 with IC50 7.31 ± 0.48 µM. Moreover, 8d manifested selectivity against PC3 (IC50 = 20.16 ± 0.07 µM), while 8e was selective toward KB-3-1 cell line (IC50 = 21 ± 4.24 µM). Matching with docking profile, the enzymatic assay divulged that 8e is a dual potent single-digit nanomolar inhibitor of VEGFR-2 and EGFR with IC50 values of 24.67 nM and 31.6 nM that were almost equipotent to sorafenib (31.08 nM) and erlotinib (26.79 nM), respectively.

20.
Nat Prod Res ; 35(8): 1281-1291, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-31429299

RESUMEN

Boshramycinones A-C (1-3), three new anthracyclinones, were isolated from the culture broth of the marine-derived Streptomyces sp. Mei 16-1,2 together with 2-acetyl-1,8-dihydroxy-3-methyl-anthraquinone (4) and bafilomycins B1, B2, and C1-amide. The isolated compounds were identified by NMR spectroscopy and mass spectrometry, the absolute configuration of 3 was determined by comparison of experimental and ab initio-calculated chiroptical data. The antimicrobial activity of the bacterial extract and the isolated compounds were assayed using a set of microorganisms, and cytotoxic activities were determined against 36 human cancer cell lines.


Asunto(s)
Antraquinonas/química , Antraquinonas/farmacología , Antiinfecciosos/farmacología , Antineoplásicos/farmacología , Streptomyces/metabolismo , Antraquinonas/metabolismo , Antiinfecciosos/química , Antineoplásicos/química , Organismos Acuáticos , Línea Celular Tumoral , Evaluación Preclínica de Medicamentos , Humanos , Macrólidos/química , Macrólidos/metabolismo , Espectroscopía de Resonancia Magnética , Espectrometría de Masas , Estructura Molecular , Streptomyces/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...