Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nanotechnology ; 31(36): 365404, 2020 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-32470955

RESUMEN

Synthesis of rational nanostructure design of hybrid materials including uniformly growing, stable and highly porous structures have received a great deal of attention for many energy storage applications. In this study, the positive electrode of the uniform distribution of NiCo2O4 nanorods anchored on carbon nanofibers has been successfully prepared by in-situ growth under the hydrothermal process. Whereas, the activated multichannel carbon nanofibers (AMCNFs) have been fabricated via electrospinning followed by alkaline activation as the negative electrode. The crystal phase, morphological structure for the proposed electrode materials were characterized by x-ray diffraction (XRD), Raman spectroscopy, scanning electron microscopy (SEM), and transmission electron microscopy (TEM). Moreover, the electrochemical behaviors were investigated using cyclic voltammetry (CV), galvanostatic charge and discharge (GCD) and electrochemical impedance spectroscopy (EIS) measurements. Compared to the neat CNFs and the pristine NiCo2O4, the NiCo2O4@CNFs hybrid electrodes showed better electrochemical performance and achieved a high specific capacitance up to 649 F g-1 at a current density of 3 A g-1. The optimized NiCo2O4@CNFs//AMCNFs asymmetric device achieved a high energy density of 38.5 Wh kg-1 with a power density of 1.6 kW kg-1 and possessed excellent recyclability with 93.1% capacitance retention over 6000 charging/discharging cycles. Overall, the proposed study introduces a facile strategy for the robust design of hybrid structured as effective nanomaterials based electrode for high-performance electrochemical supercapacitors.

2.
Nanotechnology ; 31(18): 185403, 2020 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-31952052

RESUMEN

This work aims to develop and characterize a new design of free-standing interconnected carbon nanofiber electrodes for supercapacitor application. The fibers are obtained via carbonization of three components of electrospun nanofiber mats based on a polyacrylonitrile polymer (as a carbon backbone precursor), polyvinylalcohol (as a sacrificial copolymer), and 0-1.0 wt% multi-walled carbon nanotubes. Carbonizing these ternary composites results in fibers with about twice as large in surface area and one order of magnitude higher in electrical conductivity than those obtained by the carbonization of neat polyacrylonitrile and/or binary polyacrylonitrile-0-1.0 wt% carbon nanotube mats. The carbonized polyacrylonitrile-polyvinylalcohol-0.3 wt% carbon nanotube mat reveals the highest surface area and electrical conductivity and best capacitive performance. It exhibits energy and power densities of 27.8 Wh kg-1 and 110.59 kW kg-1, respectively, and cyclic stability of 95% after 2000 charge-discharge cycles at a charging current of 1.0 Ag-1. The nanotubes' alignment along the fiber's axis, the formation of fiber-fiber interconnected morphology with more mesopore pollution, and changes in the graphitization degree and defect features of fiber crystallites are the reasons for the observed increase in the electrical conductivity, surface area, and capacitive performance of the carbon fibers. Therefore, the new design represents a potential free-standing carbon nanofiber electrode for future electrochemical double layer capacitor (EDLC) device fabrication.

3.
Materials (Basel) ; 12(24)2019 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-31817624

RESUMEN

In order to improve the sensitivity and to reduce the working temperature of the CH4 gas sensor, a novel 1D nanostructure of CuO-doped In2O3 was synthesized by the co-evaporation of Cu and In granules. The samples were prepared with changing the weight ratio between Cu and In. Morphology, structure, and gas sensing properties of the prepared films were characterized. The planned operating temperatures for the fabricated sensors are 50-200 °C, where the ability to detect CH4 at low temperatures is rarely reported. For low Cu content, the fabricated sensors based on CuO-doped In2O3 showed very good sensing performance at low operating temperatures. The detection of CH4 at these low temperatures exhibits the potential of the present sensors compared to the reported in the literature. The fabricated sensors showed also good reversibility toward the CH4 gas. However, the sensor fabricated of CuO-mixed In2O3 with a ratio of 1:1 did not show any response toward CH4. In other words, the mixed-phase of p- and n-type of CuO and In2O3 materials with a ratio of 1:1 is not recommended for fabricating sensors for reducing gas, such as CH4. The gas sensing mechanism was described in terms of the incorporation of Cu in the In2O3 matrix and the formation of CuO and In2O3 phases.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...