Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Biochemistry (Mosc) ; 89(2): 279-298, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38622096

RESUMEN

An increase in mitochondrial DNA (mtDNA) mutations and an ensuing increase in mitochondrial reactive oxygen species (ROS) production have been suggested to be a cause of the aging process ("the mitochondrial hypothesis of aging"). In agreement with this, mtDNA-mutator mice accumulate a large amount of mtDNA mutations, giving rise to defective mitochondria and an accelerated aging phenotype. However, incongruously, the rates of ROS production in mtDNA mutator mitochondria have generally earlier been reported to be lower - not higher - than in wildtype, thus apparently invalidating the "mitochondrial hypothesis of aging". We have here re-examined ROS production rates in mtDNA-mutator mice mitochondria. Using traditional conditions for measuring ROS (succinate in the absence of rotenone), we indeed found lower ROS in the mtDNA-mutator mitochondria compared to wildtype. This ROS mainly results from reverse electron flow driven by the membrane potential, but the membrane potential reached in the isolated mtDNA-mutator mitochondria was 33 mV lower than that in wildtype mitochondria, due to the feedback inhibition of succinate oxidation by oxaloacetate, and to a lower oxidative capacity in the mtDNA-mutator mice, explaining the lower ROS production. In contrast, in normal forward electron flow systems (pyruvate (or glutamate) + malate or palmitoyl-CoA + carnitine), mitochondrial ROS production was higher in the mtDNA-mutator mitochondria. Particularly, even during active oxidative phosphorylation (as would be ongoing physiologically), higher ROS rates were seen in the mtDNA-mutator mitochondria than in wildtype. Thus, when examined under physiological conditions, mitochondrial ROS production rates are indeed increased in mtDNA-mutator mitochondria. While this does not prove the validity of the mitochondrial hypothesis of aging, it may no longer be said to be negated in this respect. This paper is dedicated to the memory of Professor Vladimir P. Skulachev.


Asunto(s)
ADN Mitocondrial , Mitocondrias , Ratones , Animales , ADN Mitocondrial/genética , Especies Reactivas de Oxígeno , Mitocondrias/genética , Envejecimiento/genética , Mutación , Succinatos
2.
Nutrients ; 14(3)2022 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-35276915

RESUMEN

The fatty acid elongase elongation of very long-chain fatty acids protein 2 (ELOVL2) controls the elongation of polyunsaturated fatty acids (PUFA) producing precursors for omega-3, docosahexaenoic acid (DHA), and omega-6, docosapentaenoic acid (DPAn-6) in vivo. Expectedly, Elovl2-ablation drastically reduced the DHA and DPAn-6 in liver mitochondrial membranes. Unexpectedly, however, total PUFAs levels decreased further than could be explained by Elovl2 ablation. The lipid peroxidation process was not involved in PUFAs reduction since malondialdehyde-lysine (MDAL) and other oxidative stress biomarkers were not enhanced. The content of mitochondrial respiratory chain proteins remained unchanged. Still, membrane remodeling was associated with the high voltage-dependent anion channel (VDAC) and adenine nucleotide translocase 2 (ANT2), a possible reflection of the increased demand on phospholipid transport to the mitochondria. Mitochondrial function was impaired despite preserved content of the respiratory chain proteins and the absence of oxidative damage. Oligomycin-insensitive oxygen consumption increased, and coefficients of respiratory control were reduced by 50%. The mitochondria became very sensitive to fatty acid-induced uncoupling and permeabilization, where ANT2 is involved. Mitochondrial volume and number of peroxisomes increased as revealed by transmission electron microscopy. In conclusion, the results imply that endogenous DHA production is vital for the normal function of mouse liver mitochondria and could be relevant not only for mice but also for human metabolism.


Asunto(s)
Mitocondrias Hepáticas , Membranas Mitocondriales , Animales , Ácidos Grasos , Hígado , Ratones , Mitocondrias
3.
Biochim Biophys Acta Bioenerg ; 1863(4): 148542, 2022 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-35192808

RESUMEN

The possibility that N-acyl amino acids could function as brown or brite/beige adipose tissue-derived lipokines that could induce UCP1-independent thermogenesis by uncoupling mitochondrial respiration in several peripheral tissues is of significant physiological interest. To quantify the potency of N-acyl amino acids versus conventional fatty acids as thermogenic inducers, we have examined the affinity and efficacy of two pairs of such compounds: oleate versus N-oleoyl-leucine and arachidonate versus N-arachidonoyl-glycine in cells and mitochondria from different tissues. We found that in cultures of the muscle-derived L6 cell line, as well as in primary cultures of murine white, brite/beige and brown adipocytes, the N-acyl amino acids were proficient uncouplers but that they did not systematically display higher affinity or potency than the conventional fatty acids, and they were not as efficient uncouplers as classical protonophores (FCCP). Higher concentrations of the N-acyl amino acids (as well as of conventional fatty acids) were associated with signs of deleterious effects on the cells. In liver mitochondria, we found that the N-acyl amino acids uncoupled similarly to conventional fatty acids, thus apparently via activation of the adenine nucleotide transporter-2. In brown adipose tissue mitochondria, the N-acyl amino acids were able to activate UCP1, again similarly to conventional fatty acids. We thus conclude that the formation of the acyl-amino acid derivatives does not confer upon the corresponding fatty acids an enhanced ability to induce thermogenesis in peripheral tissues, and it is therefore unlikely that the N-acyl amino acids are of specific physiological relevance as UCP1-independent thermogenic compounds.


Asunto(s)
Aminoácidos , Ácidos Grasos , Aminoácidos/metabolismo , Aminoácidos/farmacología , Animales , Ácidos Grasos/metabolismo , Ácidos Grasos/farmacología , Ratones , Mitocondrias/metabolismo , Proteínas Mitocondriales/metabolismo , Termogénesis/fisiología , Proteína Desacopladora 1/metabolismo
4.
Cell Rep ; 27(6): 1686-1698.e5, 2019 05 07.
Artículo en Inglés | MEDLINE | ID: mdl-31067456

RESUMEN

An excess of glucocorticoids leads to the development of obesity in both mice and humans, but the mechanism for this is unknown. Here, we determine the extent to which decreased BAT thermogenic capacity (as a result of glucocorticoid treatment) contributes to the development of obesity. Contrary to previous suggestions, we show that only in mice housed at thermoneutrality (30°C) does corticosterone treatment reduce total BAT UCP1 protein. This reduction is reflected in reduced brown adipocyte cellular and mitochondrial UCP1-dependent respiration. However, glucocorticoid-induced obesity develops to the same extent in animals housed at 21°C and 30°C, whereas total BAT UCP1 protein levels differ 100-fold between the two groups. In corticosterone-treated wild-type and UCP1 knockout mice housed at 30°C, obesity also develops to the same extent. Thus, our results demonstrate that the development of glucocorticoid-induced obesity is not caused by a decreased UCP1-dependent thermogenic capacity.


Asunto(s)
Glucocorticoides/efectos adversos , Obesidad/etiología , Obesidad/metabolismo , Proteína Desacopladora 1/metabolismo , Tejido Adiposo Pardo/metabolismo , Adiposidad , Animales , Respiración de la Célula , Corticosterona/efectos adversos , Regulación hacia Abajo , Conducta Alimentaria , Ratones , Mitocondrias/metabolismo , Obesidad/patología , Fenotipo , Temperatura , Transcripción Genética
5.
Cell Rep ; 24(10): 2746-2756.e5, 2018 09 04.
Artículo en Inglés | MEDLINE | ID: mdl-30184507

RESUMEN

Adipocytes, once considered simple lipid-storing cells, are rapidly emerging as complex cells with many biologically diverse functions. A powerful high-throughput method for analyzing single cells is flow cytometry. Several groups have attempted to analyze and sort freshly isolated adipocytes; however, using an adipocyte-specific reporter mouse, we demonstrate that these studies fail to detect the majority of white adipocytes. We define critical settings required for adipocyte flow cytometry and provide a rigid strategy for analyzing and sorting white and brown adipocyte populations. The applicability of our protocol is shown by sorting mouse adipocytes based on size or UCP1 expression and demonstrating that a subset of human adipocytes lacks the ß2-adrenergic receptor, particularly in the insulin-resistant state. In conclusion, the present study confers key technological insights for analyzing and sorting mature adipocytes, opening up numerous downstream research applications.


Asunto(s)
Adipocitos/citología , Adipocitos/metabolismo , Citometría de Flujo/métodos , Tejido Adiposo/citología , Tejido Adiposo/metabolismo , Tejido Adiposo Pardo/citología , Tejido Adiposo Pardo/metabolismo , Tejido Adiposo Blanco/citología , Tejido Adiposo Blanco/metabolismo , Animales , Humanos , Ratones , Proteína Desacopladora 1/metabolismo
6.
EMBO Mol Med ; 10(3)2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29343498

RESUMEN

Brown adipose tissue (BAT) activation stimulates energy expenditure in human adults, which makes it an attractive target to combat obesity and related disorders. Recent studies demonstrated a role for G protein-coupled receptor 120 (GPR120) in BAT thermogenesis. Here, we investigated the therapeutic potential of GPR120 agonism and addressed GPR120-mediated signaling in BAT We found that activation of GPR120 by the selective agonist TUG-891 acutely increases fat oxidation and reduces body weight and fat mass in C57Bl/6J mice. These effects coincided with decreased brown adipocyte lipid content and increased nutrient uptake by BAT, confirming increased BAT activity. Consistent with these observations, GPR120 deficiency reduced expression of genes involved in nutrient handling in BAT Stimulation of brown adipocytes in vitro with TUG-891 acutely induced O2 consumption, through GPR120-dependent and GPR120-independent mechanisms. TUG-891 not only stimulated GPR120 signaling resulting in intracellular calcium release, mitochondrial depolarization, and mitochondrial fission, but also activated UCP1. Collectively, these data suggest that activation of brown adipocytes with the GPR120 agonist TUG-891 is a promising strategy to increase lipid combustion and reduce obesity.


Asunto(s)
Tejido Adiposo Pardo/metabolismo , Compuestos de Bifenilo/farmacología , Mitocondrias/metabolismo , Fenilpropionatos/farmacología , Receptores Acoplados a Proteínas G/agonistas , Adipocitos Marrones/citología , Adipocitos Marrones/efectos de los fármacos , Adipocitos Marrones/metabolismo , Adipocitos Blancos/citología , Adipocitos Blancos/efectos de los fármacos , Adipocitos Blancos/metabolismo , Tejido Adiposo Pardo/efectos de los fármacos , Tejido Adiposo Blanco/efectos de los fármacos , Tejido Adiposo Blanco/metabolismo , Adiposidad/efectos de los fármacos , Animales , Peso Corporal/efectos de los fármacos , Diferenciación Celular/efectos de los fármacos , Respiración de la Célula/efectos de los fármacos , Regulación de la Expresión Génica/efectos de los fármacos , Glucosa/metabolismo , Lípidos , Masculino , Ratones Endogámicos C57BL , Mitocondrias/efectos de los fármacos , Modelos Biológicos , Oxidación-Reducción , Consumo de Oxígeno/efectos de los fármacos , Receptores Acoplados a Proteínas G/deficiencia , Receptores Acoplados a Proteínas G/metabolismo , Proteína Desacopladora 1/metabolismo
7.
Aging (Albany NY) ; 9(2): 315-339, 2017 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-28209927

RESUMEN

MtDNA mutator mice exhibit marked features of premature aging. We find that these mice treated from age of ≈100 days with the mitochondria-targeted antioxidant SkQ1 showed a delayed appearance of traits of aging such as kyphosis, alopecia, lowering of body temperature, body weight loss, as well as ameliorated heart, kidney and liver pathologies. These effects of SkQ1 are suggested to be related to an alleviation of the effects of an enhanced reactive oxygen species (ROS) level in mtDNA mutator mice: the increased mitochondrial ROS released due to mitochondrial mutations probably interact with polyunsaturated fatty acids in cardiolipin, releasing malondialdehyde and 4-hydroxynonenal that form protein adducts and thus diminishes mitochondrial functions. SkQ1 counteracts this as it scavenges mitochondrial ROS. As the results, the normal mitochondrial ultrastructure is preserved in liver and heart; the phosphorylation capacity of skeletal muscle mitochondria as well as the thermogenic capacity of brown adipose tissue is also improved. The SkQ1-treated mice live significantly longer (335 versus 290 days). These data may be relevant in relation to treatment of mitochondrial diseases particularly and the process of aging in general.


Asunto(s)
Envejecimiento/efectos de los fármacos , ADN Mitocondrial/metabolismo , Longevidad/efectos de los fármacos , Mutación , Plastoquinona/análogos & derivados , Tejido Adiposo Pardo/efectos de los fármacos , Tejido Adiposo Pardo/metabolismo , Envejecimiento/metabolismo , Animales , Temperatura Corporal/fisiología , Peso Corporal/fisiología , ADN Mitocondrial/genética , Corazón/efectos de los fármacos , Hígado/efectos de los fármacos , Hígado/metabolismo , Longevidad/fisiología , Ratones , Mitocondrias/genética , Mitocondrias/metabolismo , Músculo Esquelético/efectos de los fármacos , Músculo Esquelético/metabolismo , Miocardio/metabolismo , Plastoquinona/farmacología , Especies Reactivas de Oxígeno/metabolismo
8.
Am J Physiol Endocrinol Metab ; 312(1): E72-E87, 2017 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-27923808

RESUMEN

Cidea is a gene highly expressed in thermogenesis-competent (UCP1-containing) adipose cells, both brown and brite/beige. Here, we initially demonstrate a remarkable adipose-depot specific regulation of Cidea expression. In classical brown fat, Cidea mRNA is expressed continuously and invariably, irrespective of tissue recruitment. However, Cidea protein levels are regulated posttranscriptionally, being conspicuously induced in the thermogenically recruited state. In contrast, in brite fat, Cidea protein levels are regulated at the transcriptional level, and Cidea mRNA and protein levels are proportional to tissue "briteness." Although routinely followed as a thermogenic molecular marker, Cidea function is not clarified. Here, we employed a gain-of-function approach to examine a possible role of Cidea in the regulation of thermogenesis. We utilized transgenic aP2-hCidea mice that overexpress human Cidea in all adipose tissues. We demonstrate that UCP1 activity is markedly suppressed in brown-fat mitochondria isolated from aP2-hCidea mice. However, mitochondrial UCP1 protein levels were identical in wild-type and transgenic mice. This implies a regulatory effect of Cidea on UCP1 activity, but as we demonstrate that Cidea itself is not localized to mitochondria, we propose an indirect inhibitory effect. The Cidea-induced inhibition of UCP1 activity (observed in isolated mitochondria) is physiologically relevant since the mice, through an appropriate homeostatic compensatory mechanism, increased the total amount of UCP1 in the tissue to exactly match the diminished thermogenic capacity of the UCP1 protein and retain unaltered nonshivering thermogenic capacity. Thus, we verified Cidea as being a marker of thermogenesis-competent adipose tissues, but we conclude that Cidea, unexpectedly, functions molecularly as an indirect inhibitor of thermogenesis.


Asunto(s)
Tejido Adiposo Pardo/metabolismo , Proteínas Reguladoras de la Apoptosis/genética , Mitocondrias/metabolismo , ARN Mensajero/metabolismo , Termogénesis/genética , Proteína Desacopladora 1/genética , Tejido Adiposo Pardo/patología , Tejido Adiposo Blanco/patología , Animales , Proteínas Reguladoras de la Apoptosis/metabolismo , Western Blotting , Calorimetría Indirecta , Frío , Humanos , Ratones , Ratones Transgénicos , Consumo de Oxígeno , Reacción en Cadena en Tiempo Real de la Polimerasa , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Proteína Desacopladora 1/metabolismo
10.
Arch Toxicol ; 90(5): 1117-28, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-26041126

RESUMEN

The metabolically inert perfluorinated fatty acids perfluorooctane sulfonate (PFOS) and perfluorooctanoate (PFOA) can display fatty acid-like activity in biological systems. The uncoupling protein 1 (UCP1) in brown adipose tissue is physiologically (re)activated by fatty acids, including octanoate. This leads to bioenergetically uncoupled energy dissipation (heat production, thermogenesis). We have examined here the possibility that PFOA/PFOS can directly (re)activate UCP1 in isolated mouse brown-fat mitochondria. In wild-type brown-fat mitochondria, PFOS and PFOA overcame GDP-inhibited thermogenesis, leading to increased oxygen consumption and dissipated membrane potential. The absence of this effect in brown-fat mitochondria from UCP1-ablated mice indicated that it occurred through activation of UCP1. A competitive type of inhibition by increased GDP concentrations indicated interaction with the same mechanistic site as that utilized by fatty acids. No effect was observed in heart mitochondria, i.e., in mitochondria without UCP1. The stimulatory effect of PFOA/PFOS was not secondary to non-specific mitochondrial membrane permeabilization or to ROS production. Thus, metabolic effects of perfluorinated fatty acids could include direct brown adipose tissue (UCP1) activation. The possibility that this may lead to unwarranted extra heat production and thus extra utilization of food resources, leading to decreased fitness in mammalian wildlife, is discussed, as well as possible negative effects in humans. However, a possibility to utilize PFOA-/PFOS-like substances for activating UCP1 therapeutically in obesity-prone humans may also be envisaged.


Asunto(s)
Adipocitos Marrones/efectos de los fármacos , Tejido Adiposo Pardo/efectos de los fármacos , Ácidos Alcanesulfónicos/toxicidad , Caprilatos/toxicidad , Metabolismo Energético/efectos de los fármacos , Fluorocarburos/toxicidad , Mitocondrias/efectos de los fármacos , Proteína Desacopladora 1/metabolismo , Adipocitos Marrones/metabolismo , Tejido Adiposo Pardo/metabolismo , Animales , Relación Dosis-Respuesta a Droga , Guanosina Difosfato/metabolismo , Peróxido de Hidrógeno/metabolismo , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Ratones Endogámicos C57BL , Ratones Noqueados , Mitocondrias/metabolismo , Mitocondrias Cardíacas/efectos de los fármacos , Mitocondrias Cardíacas/metabolismo , Dilatación Mitocondrial/efectos de los fármacos , Consumo de Oxígeno/efectos de los fármacos , Termogénesis/efectos de los fármacos , Factores de Tiempo , Proteína Desacopladora 1/genética
11.
Nat Commun ; 6: 7433, 2015 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-26118629

RESUMEN

In humans, Cidea (cell death-inducing DNA fragmentation factor alpha-like effector A) is highly but variably expressed in white fat, and expression correlates with metabolic health. Here we generate transgenic mice expressing human Cidea in adipose tissues (aP2-hCidea mice) and show that Cidea is mechanistically associated with a robust increase in adipose tissue expandability. Under humanized conditions (thermoneutrality, mature age and prolonged exposure to high-fat diet), aP2-hCidea mice develop a much more pronounced obesity than their wild-type littermates. Remarkably, the malfunctioning of visceral fat normally caused by massive obesity is fully overcome-perilipin 1 and Akt expression are preserved, tissue degradation is prevented, macrophage accumulation is decreased and adiponectin expression remains high. Importantly, the aP2-hCidea mice display enhanced insulin sensitivity. Our data establish a functional role for Cidea and suggest that, in humans, the association between Cidea levels in white fat and metabolic health is not only correlative but also causative.


Asunto(s)
Tejido Adiposo/crecimiento & desarrollo , Proteínas Reguladoras de la Apoptosis/metabolismo , Metabolismo Energético/fisiología , Tejido Adiposo/metabolismo , Animales , Proteínas Reguladoras de la Apoptosis/genética , Grasas de la Dieta/administración & dosificación , Regulación de la Expresión Génica/fisiología , Genotipo , Resistencia a la Insulina , Macrófagos/fisiología , Ratones , Ratones Transgénicos
12.
Toxicol Sci ; 146(2): 334-43, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-26001964

RESUMEN

The environmental pollutants perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA) cause a dramatic reduction in the size of the major adipose tissue depots and a general body weight decrease when they are added to the food of mice. We demonstrate here that this is mainly due to a reduction in food intake; this reduction was not due to food aversion. Remarkably and unexpectedly, a large part of the effect of PFOA/PFOS on food intake was dependent on the presence of the uncoupling protein 1 (UCP1) in the mice. Correspondingly, PFOA/PFOS treatment induced recruitment of brown adipose tissue mitochondria: increased oxidative capacity and increased UCP1-mediated oxygen consumption (thermogenesis). In mice pair-fed to the food intake during PFOA/PFOS treatment in wildtype mice, brown-fat mitochondrial recruitment was also induced. We conclude that we have uncovered the existence of a regulatory component of food intake that is dependent upon brown adipose tissue thermogenic activity. The possible environmental consequences of this novel PFOA/PFOS effect (a possible decreased fitness) are noted, as well as the perspectives of this finding on the general understanding of control of food intake control and its possible extension to combatting obesity.


Asunto(s)
Tejido Adiposo Pardo/efectos de los fármacos , Ácidos Alcanesulfónicos/toxicidad , Caprilatos/toxicidad , Ingestión de Energía , Fluorocarburos/toxicidad , Canales Iónicos/metabolismo , Mitocondrias/efectos de los fármacos , Proteínas Mitocondriales/metabolismo , Regulación hacia Arriba/efectos de los fármacos , Tejido Adiposo Pardo/metabolismo , Animales , Contaminantes Ambientales/toxicidad , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Mitocondrias/metabolismo , Proteína Desacopladora 1
13.
FASEB J ; 29(8): 3274-86, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25900807

RESUMEN

Point mutations and deletions of mitochondrial DNA (mtDNA) accumulate in tissues during aging in animals and humans and are the basis for mitochondrial diseases. Testosterone synthesis occurs in the mitochondria of Leydig cells. Mitochondrial dysfunction (as induced here experimentally in mtDNA mutator mice that carry a proofreading-deficient form of mtDNA polymerase γ, leading to mitochondrial dysfunction in all cells types so far studied) would therefore be expected to lead to low testosterone levels. Although mtDNA mutator mice showed a dramatic reduction in testicle weight (only 15% remaining) and similar decreases in number of spermatozoa, testosterone levels in mtDNA mutator mice were unexpectedly fully unchanged. Leydig cell did not escape mitochondrial damage (only 20% of complex I and complex IV remaining) and did show high levels of reactive oxygen species (ROS) production (>5-fold increased), and permeabilized cells demonstrated absence of normal mitochondrial function. Nevertheless, within intact cells, mitochondrial membrane potential remained high, and testosterone production was maintained. This implies development of a compensatory mechanism. A rescuing mechanism involving electrons from the pentose phosphate pathway transferred via a 3-fold up-regulated cytochrome b5 to cytochrome c, allowing for mitochondrial energization, is suggested. Thus, the Leydig cells escape mitochondrial dysfunction via a unique rescue pathway. Such a pathway, bypassing respiratory chain dysfunction, may be of relevance with regard to mitochondrial disease therapy and to managing ageing in general.


Asunto(s)
Envejecimiento/genética , Células Intersticiales del Testículo/metabolismo , Mitocondrias/genética , Enfermedades Mitocondriales/genética , Envejecimiento/metabolismo , Animales , Citocromos b5/genética , Citocromos b5/metabolismo , Citocromos c/genética , Citocromos c/metabolismo , ADN Mitocondrial/genética , Masculino , Potencial de la Membrana Mitocondrial/genética , Ratones , Ratones Endogámicos C57BL , Mitocondrias/metabolismo , Enfermedades Mitocondriales/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Espermatozoides/metabolismo , Testosterona/genética , Testosterona/metabolismo
14.
Biochim Biophys Acta ; 1837(12): 2017-2030, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24769119

RESUMEN

Whether active UCP1 can reduce ROS production in brown-fat mitochondria is presently not settled. The issue is of principal significance, as it can be seen as a proof- or disproof-of-principle concerning the ability of any protein to diminish ROS production through membrane depolarization. We therefore undertook a comprehensive investigation of the significance of UCP1 for ROS production, by comparing the ROS production in brown-fat mitochondria isolated from wildtype mice (that display membrane depolarization) or from UCP1(-/-) mice (with a high membrane potential). We tested the significance of UCP1 for glycerol-3-phosphate-supported ROS production by three methods (fluorescent dihydroethidium and the ESR probe PHH for superoxide, and fluorescent Amplex Red for hydrogen peroxide), and followed ROS production also with succinate, acyl-CoA or pyruvate as substrate. We studied the effects of the reverse electron flow inhibitor rotenone, the UCP1 activity inhibitor GDP, and the uncoupler FCCP. We also examined the effect of a physiologically induced increase in UCP1 amount. We noted GDP effects that were not UCP1-related. We conclude that only ROS production supported by exogenously added succinate was affected by the presence of active UCP1; ROS production supported by any other tested substrate (including endogenously generated succinate) was unaffected. This conclusion indicates that UCP1 is not involved in control of ROS production in brown-fat mitochondria. Extrapolation of these data to other tissues would imply that membrane depolarization may not necessarily decrease physiologically relevant ROS production. This article is a part of a Special Issue entitled: 18th European Bioenergetics Conference (Biochim. Biophys. Acta, Volume 1837, Issue 7, July 2014).


Asunto(s)
Tejido Adiposo Pardo/metabolismo , Canales Iónicos/metabolismo , Mitocondrias/metabolismo , Proteínas Mitocondriales/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Animales , Carbonil Cianuro p-Trifluorometoxifenil Hidrazona/farmacología , Frío , Espectroscopía de Resonancia por Spin del Electrón , Glicerofosfatos/farmacología , Guanosina Difosfato/farmacología , Peróxido de Hidrógeno/metabolismo , Immunoblotting , Canales Iónicos/genética , Masculino , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Ratones Endogámicos C57BL , Ratones Noqueados , Mitocondrias/efectos de los fármacos , Mitocondrias/fisiología , Proteínas Mitocondriales/genética , Consumo de Oxígeno/efectos de los fármacos , Ionóforos de Protónes/farmacología , Ácido Pirúvico/farmacología , Ácido Succínico/farmacología , Superóxidos/metabolismo , Proteína Desacopladora 1
15.
Aging Cell ; 13(4): 765-8, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24621297

RESUMEN

In mtDNA mutator mice, mtDNA mutations accumulate leading to a rapidly aging phenotype. However, there is little evidence of oxidative damage to tissues, and when analyzed ex vivo, no change in production of the reactive oxygen species (ROS) superoxide and hydrogen peroxide by mitochondria has been reported, undermining the mitochondrial oxidative damage theory of aging. Paradoxically, interventions that decrease mitochondrial ROS levels in vivo delay onset of aging. To reconcile these findings, we used the mitochondria-targeted mass spectrometry probe MitoB to measure hydrogen peroxide within mitochondria of living mice. Mitochondrial hydrogen peroxide was the same in young mutator and control mice, but as the mutator mice aged, hydrogen peroxide increased. This suggests that the prolonged presence of mtDNA mutations in vivo increases hydrogen peroxide that contributes to an accelerated aging phenotype, perhaps through the activation of pro-apoptotic and pro-inflammatory redox signaling pathways.


Asunto(s)
Envejecimiento/metabolismo , ADN Mitocondrial/metabolismo , Peróxido de Hidrógeno/metabolismo , Mitocondrias/metabolismo , Mutación/genética , Envejecimiento/sangre , Envejecimiento/efectos de los fármacos , Animales , Citocinas/sangre , Lipopolisacáridos/farmacología , Ratones , Mitocondrias/efectos de los fármacos , Compuestos Organofosforados/farmacología
16.
Cell Rep ; 5(5): 1196-203, 2013 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-24290753

RESUMEN

The phenomenon of white fat "browning," in which certain white adipose tissue depots significantly increase gene expression for the uncoupling protein UCP1 and thus supposedly acquire thermogenic, fat-burning properties, has attracted considerable attention. Because the mRNA increases are from very low initial levels, the metabolic relevance of the change is unclear: is the UCP1 protein thermogenically competent in these brite/beige-fat mitochondria? We found that, in mitochondria isolated from the inguinal "white" adipose depot of cold-acclimated mice, UCP1 protein levels almost reached those in brown-fat mitochondria. The UCP1 was thermogenically functional, in that these mitochondria exhibited UCP1-dependent thermogenesis with lipid or carbohydrate substrates with canonical guanosine diphosphate (GDP) sensitivity and loss of thermogenesis in UCP1 knockout (KO) mice. Obesogenic mouse strains had a lower thermogenic potential than obesity-resistant strains. The thermogenic density (UCP1-dependent oxygen consumption per g tissue) of inguinal white adipose tissue was maximally one-fifth of interscapular brown adipose tissue, and the total quantitative contribution of all inguinal mitochondria was maximally one-third of all interscapular brown-fat mitochondria, indicating that the classical brown adipose tissue depots would still predominate in thermogenesis.


Asunto(s)
Tejido Adiposo Pardo/metabolismo , Tejido Adiposo Blanco/metabolismo , Canales Iónicos/metabolismo , Mitocondrias/metabolismo , Proteínas Mitocondriales/metabolismo , Termogénesis , Tejido Adiposo Pardo/fisiología , Tejido Adiposo Blanco/fisiología , Animales , Metabolismo de los Hidratos de Carbono , Guanosina Difosfato/metabolismo , Canales Iónicos/genética , Metabolismo de los Lípidos , Ratones , Ratones Endogámicos C57BL , Proteínas Mitocondriales/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , Proteína Desacopladora 1
17.
PLoS One ; 7(8): e41406, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22870219

RESUMEN

Uncoupling protein 2 (UCP2) is an inner mitochondrial membrane protein. Although the protein was discovered in 1997, its function and even its tissue distribution are still under debate. Here we present a quantitative analysis of mRNA and protein expression in various mice tissues, revealing that UCP2 is mainly expressed in organs and cells associated with the immune system. Although the UCP2 gene is present in the brain, as demonstrated using quantitative RT-PCR, the protein was not detectable in neurons under physiological conditions. Instead, we could detect UCP2 in microglia, which act in the immune defense of the central nervous system. In lymphocytes, activation led to a ten-fold increase of UCP2 protein expression simultaneously to the increase in levels of other mitochondrial proteins, whereas lymphocyte re-stimulation resulted in the selective increase of UCP2. The highest detected level of UCP2 expression in stimulated T-cells (0.54 ng/(µg total cellular protein)) was approximately 200 times lower than the level of UCP1 in brown adipose tissue from room temperature acclimated mice. Both the UCP2 expression pattern and the time course of up-regulation in stimulated T-cells imply UCP2's involvement in the immune response, probably by controlling the metabolism during cell proliferation.


Asunto(s)
Proliferación Celular , Regulación de la Expresión Génica/inmunología , Canales Iónicos/inmunología , Activación de Linfocitos/fisiología , Microglía/inmunología , Proteínas Mitocondriales/inmunología , Linfocitos T/inmunología , Animales , Canales Iónicos/biosíntesis , Ratones , Microglía/citología , Microglía/metabolismo , Proteínas Mitocondriales/biosíntesis , Proteínas del Tejido Nervioso/biosíntesis , Proteínas del Tejido Nervioso/inmunología , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Linfocitos T/citología , Linfocitos T/metabolismo , Proteína Desacopladora 2
18.
Aging (Albany NY) ; 3(11): 1110-9, 2011 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-22166671

RESUMEN

The effect of the mitochondria-targeted, plastoquinone-containing antioxidant SkQ1 on the lifespan of outbred mice and of three strains of inbred mice was studied. To this end, low pathogen (LP) or specific pathogen free (SPF) vivaria in St. Petersburg, Moscow, and Stockholm were used. For comparison, we also studied mole-voles and dwarf hamsters, two wild species of small rodents kept under simulated natural conditions. It was found that substitution of a LP vivarium for a conventional (non-LP) one doubled the lifespan of female outbred mice, just as SkQ1 did in a non-LP vivarium. SkQ1 prevented age-dependent disappearance of estrous cycles of outbred mice in both LP and non-LP vivaria. In the SPF vivarium in Moscow, male BALB/c mice had shorter lifespan than females, and SkQ1 increased their lifespan to the values of the females. In the females, SkQ1 retarded development of such trait of aging as heart mass increase. Male C57Bl/6 mice housed individually in the SPF vivarium in Stockholm lived as long as females. SkQ1 increased the male lifespan, the longevity of the females being unchanged. SkQ1 did not change food intake by these mice. Dwarf hamsters and mole-voles kept in outdoor cages or under simulated natural conditions lived longer if treated with SkQ1. The effect of SkQ1 on longevity of females is assumed to mainly be due to retardation of the age-linked decline of the immune system. For males under LP or SPF conditions, SkQ1 increased the lifespan, affecting also some other system(s) responsible for aging.


Asunto(s)
Envejecimiento/efectos de los fármacos , Antioxidantes/farmacología , Longevidad/efectos de los fármacos , Mitocondrias/efectos de los fármacos , Plastoquinona/análogos & derivados , Animales , Arvicolinae , Cricetinae , Femenino , Esperanza de Vida , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Mitocondrias/metabolismo , Plastoquinona/farmacología
19.
Biochem Soc Trans ; 39(5): 1305-9, 2011 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-21936806

RESUMEN

During the last decade, the possibility that 'mild' uncoupling could be protective against oxidative damage by diminishing ROS (reactive oxygen species) production has attracted much interest. In the present paper, we briefly examine the evidence for this possibility. It is only ROS production from succinate under reverse electron-flow conditions that is sensitive to membrane potential fluctuations, and so only this type of ROS production could be affected; however, the conditions under which succinate-supported ROS production is observed include succinate concentrations that are supraphysiological. Any decrease in membrane potential, even 'mild uncoupling', must necessarily lead to large increases in respiration, i.e. it must be markedly thermogenic. Mitochondria within cells are normally ATP-producing and thus already have a diminished membrane potential, and treatment of cells, organs or animals with small amounts of artificial uncoupler does not seem to have beneficial effects that are explainable via reduced ROS production. Although it has been suggested that members of the uncoupling protein family (UCP1, UCP2 and UCP3) may mediate a mild uncoupling, present evidence does not unequivocally support such an effect, e.g. the absence of the truly uncoupling protein UCP1 is not associated with increased oxidative damage. Thus present evidence does not support mild uncoupling as a physiologically relevant alleviator of oxidative damage.


Asunto(s)
Respiración de la Célula/fisiología , Mitocondrias/metabolismo , Estrés Oxidativo/fisiología , Especies Reactivas de Oxígeno/metabolismo , Transporte de Electrón/fisiología , Proteínas del Complejo de Cadena de Transporte de Electrón/metabolismo , Canales Iónicos/metabolismo , Proteínas Mitocondriales/metabolismo , Oxidación-Reducción , Proteína Desacopladora 1
20.
PLoS One ; 6(7): e22510, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21818330

RESUMEN

BACKGROUND: There is considerable interest in identifying compounds that can improve glucose homeostasis. Skeletal muscle, due to its large mass, is the principal organ for glucose disposal in the body and we have investigated here if shikonin, a naphthoquinone derived from the Chinese plant Lithospermum erythrorhizon, increases glucose uptake in skeletal muscle cells. METHODOLOGY/PRINCIPAL FINDINGS: Shikonin increases glucose uptake in L6 skeletal muscle myotubes, but does not phosphorylate Akt, indicating that in skeletal muscle cells its effect is medaited via a pathway distinct from that used for insulin-stimulated uptake. Furthermore we find no evidence for the involvement of AMP-activated protein kinase in shikonin induced glucose uptake. Shikonin increases the intracellular levels of calcium in these cells and this increase is necessary for shikonin-mediated glucose uptake. Furthermore, we found that shikonin stimulated the translocation of GLUT4 from intracellular vesicles to the cell surface in L6 myoblasts. The beneficial effect of shikonin on glucose uptake was investigated in vivo by measuring plasma glucose levels and insulin sensitivity in spontaneously diabetic Goto-Kakizaki rats. Treatment with shikonin (10 mg/kg intraperitoneally) once daily for 4 days significantly decreased plasma glucose levels. In an insulin sensitivity test (s.c. injection of 0.5 U/kg insulin), plasma glucose levels were significantly lower in the shikonin-treated rats. In conclusion, shikonin increases glucose uptake in muscle cells via an insulin-independent pathway dependent on calcium. CONCLUSIONS/SIGNIFICANCE: Shikonin increases glucose uptake in skeletal muscle cells via an insulin-independent pathway dependent on calcium. The beneficial effects of shikonin on glucose metabolism, both in vitro and in vivo, show that the compound possesses properties that make it of considerable interest for developing novel treatment of type 2 diabetes.


Asunto(s)
Glucemia/efectos de los fármacos , Glucemia/metabolismo , Diabetes Mellitus Experimental/sangre , Células Musculares/efectos de los fármacos , Células Musculares/metabolismo , Músculo Esquelético/patología , Naftoquinonas/farmacología , Proteínas Quinasas Activadas por AMP/metabolismo , Adenosina Difosfato/metabolismo , Adenosina Trifosfato/metabolismo , Animales , Calcio/farmacología , Línea Celular , Diabetes Mellitus Experimental/patología , Transportador de Glucosa de Tipo 4/metabolismo , Insulina/farmacología , Masculino , Células Musculares/patología , Fibras Musculares Esqueléticas/efectos de los fármacos , Fibras Musculares Esqueléticas/enzimología , Naftoquinonas/administración & dosificación , Consumo de Oxígeno/efectos de los fármacos , Fosforilación/efectos de los fármacos , Transporte de Proteínas/efectos de los fármacos , Proteínas Proto-Oncogénicas c-akt/metabolismo , Ratas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA