Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
ACS Nano ; 2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38739894

RESUMEN

An environmental-friendly and sustainable carbon-based host is one of the most competitive strategies for achieving high loading and practicality of Li-S batteries. However, the polysulfide conversion reaction kinetics is still limited by the nonuniform or monofunctional catalyst configuration in the carbon host. In this work, we propose a catalysis mode based on "relay-type" co-operation by adjacent dual-metal single atoms for high-rate and durable Li-S batteries. A discarded sericin fabric-derived porous N-doped carbon with a stacked schistose structure is prepared as the high-loading sulfur (84 wt %) host by a facile ionothermal method, which further enables the uniform anchoring of Fe/Co dual-metal single atoms. This multifunctional host enables superior lithiophilic-sulfiphilic and electrocatalytic capabilities contributed by the "relay-type" single-atom modulation effects on different conversion stages of liquid polysulfides and solid Li2S2/Li2S, leading to the suppression of the "shuttle effect", alleviation of nucleation and decomposition barriers of Li2Sx, and acceleration of polysulfide conversion kinetics. The corresponding Li-S batteries exhibit a high specific capacity of 1399.0 mA h g-1, high-rate performance up to 10 C, and excellent cycling stability over 1000 cycles. They can also endure the high sulfur loading of 8.5 mg cm-2 and the lean electrolyte condition and yield an areal capacity as high as 8.6 mA h cm-2. This work evidentially demonstrates the potential of waste biomass reutilization coupled with the design of a single-atom system for practical Li-S batteries with high energy density.

2.
J Am Chem Soc ; 145(47): 25716-25725, 2023 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-37966315

RESUMEN

Ammonia is of great importance in fertilizer production and chemical synthesis. It can also potentially serve as a carbon-free energy carrier for a future hydrogen economy. Motivated by a worldwide effort to lower carbon emissions, ammonia synthesis by lithium-mediated electrochemical nitrogen reduction (LiNR) has been considered as a promising alternative to the Haber-Bosch process. A significant performance improvement in LiNR has been achieved in recent years by exploration of favorable lithium salt and proton donor for the electrolyte recipe, but the solvent study is still in its infancy. In this work, a systematic investigation on ether-based solvents toward LiNR is conducted. The assessments of solvent candidates are built on their conductivity, parasitic reactions, product distribution, and faradaic efficiency. Notably, dimethoxyethane gives the lowest potential loss among the investigated systems, while tetrahydrofuran achieves an outstanding faradaic efficiency of 58.5 ± 6.1% at an ambient pressure. We found that solvent molecules impact the above characteristics by dictating the solvation configurations of conductive ions and inducing the formation of solid electrolyte interphase with different compositions. This study highlights the importance of solvents in the LiNR process and advances the electrolyte optimization for better performance.

3.
Small ; 19(47): e2303952, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37485631

RESUMEN

Anode-free lithium (Li) batteries are attractive owing to their high energy density. However, Li loss by forming solid-electrolyte interphase (SEI) during cell activation leads to a ≈25% capacity decrease, and the capacity constantly fades upon cycling due to the side reactions on the copper (Cu) current collector. This paper reports high-initial-efficiency, long-cycle-life, and long-calendar-life anode-free Li batteries by using an organic Li salt monolayer bonded on Cu. The functional salt, namely lithium ((4-carbamoylphenyl)sulfonyl)(fluorosulfonyl)imide, electrochemically decomposes and passivates the Cu surface, which reduces Li sacrifice by SEI formation and suppresses galvanic Li corrosion and Li-electrolyte reactions during cycling. This work records a LiF-rich interphase on Cu and guided Li nucleation and growth. A 93.6% initial Li deposition efficiency is realized in a regular carbonate electrolyte, and the galvanic current is decreased to ≈40 nA cm-2 , merely one-tenth of bare Cu. After cell activation, 95.2% capacity is retained for a Cu|LiNi0.8 Mn0.1 Co0.1 pouch cell with a theoretical capacity of 200 mAh, and the cell is operated over 600 cycles. Calendar aging showed no damage to cell performance.

4.
Angew Chem Int Ed Engl ; 62(27): e202304978, 2023 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-37139890

RESUMEN

Anode-free lithium (Li) metal batteries are desirable candidates in pursuit of high-energy-density batteries. However, their poor cycling performances originated from the unsatisfactory reversibility of Li plating/stripping remains a grand challenge. Here we show a facile and scalable approach to produce high-performing anode-free Li metal batteries using a bioinspired and ultrathin (250 nm) interphase layer comprised of triethylamine germanate. The derived tertiary amine and Lix Ge alloy showed enhanced adsorption energy that significantly promoted Li-ion adsorption, nucleation and deposition, contributing to a reversible expansion/shrinkage process upon Li plating/stripping. Impressive Li plating/stripping Coulombic efficiencies (CEs) of ≈99.3 % were achieved for 250 cycles in Li/Cu cells. In addition, the anode-free LiFePO4 full batteries demonstrated maximal energy and power densities of 527 Wh kg-1 and 1554 W kg-1 , respectively, and remarkable cycling stability (over 250 cycles with an average CE of 99.4 %) at a practical areal capacity of ≈3 mAh cm-2 , the highest among state-of-the-art anode-free LiFePO4 batteries. Our ultrathin and respirable interphase layer presents a promising way to fully unlock large-scale production of anode-free batteries.

5.
Chem Commun (Camb) ; 58(74): 10345-10348, 2022 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-36039806

RESUMEN

The sodium storage mechanism of a GeP5/C composite electrode was revealed. Metallic Ge formed during discharge enhances the electronic conductivity of the electrode, while NaxP mitigates the agglomeration and volume change of Ge in the alloying process. The GeP5 phase is regenerated after recharge along with elemental Ge and P, implying a reversible phase transition of GeP5 during cycling.

6.
Angew Chem Int Ed Engl ; 61(27): e202205444, 2022 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-35468263

RESUMEN

The rising demand for energy density of cathodes means the need to raise the voltage or capacity of cathodes. Transition metal (TM) doping has been employed to enhance the electrochemical properties in multiple aspects. The redox voltage of doped cathodes usually falls in between the voltage of undoped layered cathodes. However, we found anomalous redox features in NaTi1-y Vy S2 . The first discharge platform potential (2.4 V) is significantly higher than that of undoped NaTiS2 and NaVS2 (both around 2.2 V), and the energy density is raised by 15 %. We speculate that the anomalous voltage is mainly attributed to the strong hybridization in the Ti-V-S system. Ti3+ and V3+ undergo charge transfer and form a more stable Ti (t2g 0 eg 0 ) and V (t2g 3 eg 0 ) electronic configuration. Our results indicate that higher voltage of cathode materials could be achieved by strong TM-ligand covalency, and this conclusion provides possible opportunities to explore high voltage materials for future layered cathodes.

7.
Chem Sci ; 13(6): 1547-1568, 2022 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-35282617

RESUMEN

Lithium metal is a very promising anode material for achieving high energy density for next generation battery systems due to its low redox potential and high theoretical specific capacity of 3860 mA h g-1. However, dendrite formation and low coulombic efficiency during cycling greatly hindered its practical applications. The formation of a stable solid electrolyte interphase (SEI) on the lithium metal anode (LMA) holds the key to resolving these problems. A lot of techniques such as electrolyte modification, electrolyte additive introduction, and artificial SEI layer coating have been developed to form a stable SEI with capability to facilitate fast Li+ transportation and to suppress Li dendrite formation and undesired side reactions. It is well accepted that the chemical and physical properties of the SEI on the LMA are closely related to the kinetics of Li+ transport across the electrolyte-electrode interface and Li deposition behavior, which in turn affect the overall performance of the cell. Unfortunately, the chemical and structural complexity of the SEI makes it the least understood component of the battery cell. Recently various advanced in situ and ex situ characterization techniques have been developed to study the SEI and the results are quite interesting. Therefore, an overview about these new findings and development of SEI engineering and characterization is quite valuable to the battery research community. In this perspective, different strategies of SEI engineering are summarized, including electrolyte modification, electrolyte additive application, and artificial SEI construction. In addition, various advanced characterization techniques for investigating the SEI formation mechanism are discussed, including in situ visualization of the lithium deposition behavior, the quantification of inactive lithium, and using X-rays, neutrons and electrons as probing beams for both imaging and spectroscopy techniques with typical examples.

8.
Nat Commun ; 13(1): 685, 2022 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-35115516

RESUMEN

Electrochemical oxygen reduction could proceed via either 4e--pathway toward maximum chemical-to-electric energy conversion or 2e--pathway toward onsite H2O2 production. Bulk Pt catalysts are known as the best monometallic materials catalyzing O2-to-H2O conversion, however, controversies on the reduction product selectivity are noted for atomic dispersed Pt catalysts. Here, we prepare a series of carbon supported Pt single atom catalyst with varied neighboring dopants and Pt site densities to investigate the local coordination environment effect on branching oxygen reduction pathway. Manipulation of 2e- or 4e- reduction pathways is demonstrated through modification of the Pt coordination environment from Pt-C to Pt-N-C and Pt-S-C, giving rise to a controlled H2O2 selectivity from 23.3% to 81.4% and a turnover frequency ratio of H2O2/H2O from 0.30 to 2.67 at 0.4 V versus reversible hydrogen electrode. Energetic analysis suggests both 2e- and 4e- pathways share a common intermediate of *OOH, Pt-C motif favors its dissociative reduction while Pt-S and Pt-N motifs prefer its direct protonation into H2O2. By taking the Pt-N-C catalyst as a stereotype, we further demonstrate that the maximum H2O2 selectivity can be manipulated from 70 to 20% with increasing Pt site density, providing hints for regulating the stepwise oxygen reduction in different application scenarios.

9.
Adv Mater ; 34(4): e2107353, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34738266

RESUMEN

The increasing demand for energy storage is calling for improvements in cathode performance. In traditional layered cathodes, the higher energy of the metal 3d over the O 2p orbital results in one-band cationic redox; capacity solely from cations cannot meet the needs for higher energy density. Emerging anionic redox chemistry is promising to access higher capacity. In recent studies, the low-lying O nonbonding 2p orbital was designed to activate one-band oxygen redox, but they are still accompanied by reversibility problems like oxygen loss, irreversible cation migration, and voltage decay. Herein, by regulating the metal-ligand energy level, both extra capacities provided by anionic redox and highly reversible anionic redox process are realized in NaCr1- y Vy S2 system. The simultaneous cationic and anionic redox of Cr/V and S is observed by in situ X-ray absorption near edge structure (XANES). Under high d-p hybridization, the strong covalent interaction stabilizes the holes on the anions, prevents irreversible dimerization and cation migration, and restrains voltage hysteresis and voltage decay. The work provides a fundamental understanding of highly reversible anionic redox in layered compounds, and demonstrates the feasibility of anionic redox chemistry based on hybridized bands with d-p covalence.

10.
Mater Horiz ; 8(2): 471-500, 2021 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-34821265

RESUMEN

Organic electrode materials have been considered as promising candidates for the next generation rechargeable battery systems due to their high theoretical capacity, versatility, and environmentally friendly nature. Among them, organosulfur compounds have been receiving more attention in conjunction with the development of lithium-sulfur batteries. Usually, organosulfide electrodes can deliver a relatively high theoretical capacity based on reversible breakage and formation of disulfide (S-S) bonds. In this review, we provide an overview of organosulfur materials for rechargeable lithium batteries, including their molecular structural design, structure related electrochemical performance study and electrochemical performance optimization. In addition, recent progress of advanced characterization techniques for investigation of the structure and lithium storage mechanism of organosulfur electrodes are elaborated. To further understand the perspective application, the additive effect of organosulfur compounds for lithium metal anodes, sulfur cathodes and high voltage inorganic cathode materials are reviewed with typical examples. Finally, some remaining challenges and perspectives of the organosulfur compounds as lithium battery components are also discussed. This review is intended to serve as general guidance for researchers to facilitate the development of organosulfur compounds.

11.
Angew Chem Int Ed Engl ; 60(40): 22026-22034, 2021 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-34378281

RESUMEN

Anionic redox is an effective way to boost the energy density of layer-structured metal-oxide cathodes for rechargeable batteries. However, inherent rigid nature of the TMO6 (TM: transition metals) subunits in the layered materials makes it hardly tolerate the inner strains induced by lattice glide, especially at high voltage. Herein, P2-Na0.8 Mg0.13 [Mn0.6 Co0.2 Mg0.07 □0.13 ]O2 (□: TM vacancy) is designed that contains vacancies in TM sites, and Mg ions in both TM and sodium sites. Vacancies make the rigid TMO6 octahedron become more asymmetric and flexible. Low valence Co2+ /Co3+ redox couple stabilizes the electronic structure, especially at the charged state. Mg2+ in sodium sites can tune the interlayer spacing against O-O electrostatic repulsion. Time-resolved in situ X-ray diffraction confirms that irreversible structure evolution is effectively suppressed during deep desodiation benefiting from the specific configuration. X-ray absorption spectroscopy (XAS) and density functional theory (DFT) calculations demonstrate that, deriving from the intrinsic vacancies, multiple local configurations of "□-O-□", "Na-O-□", "Mg-O-□" are superior in facilitating the oxygen redox for charge compensation than previously reported "Na-O-Mg". The resulted material delivers promising cycle stability and rate capability, with a long voltage plateau at 4.2 V contributed by oxygen, and can be well maintained even at high rates. The strategy will inspire new ideas in designing highly stable cathode materials with reversible anionic redox for sodium-ion batteries.

12.
ACS Appl Mater Interfaces ; 13(27): 31733-31740, 2021 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-34213902

RESUMEN

Sulfurized polyacrylonitrile (SPAN) is a promising high-capacity cathode material. In this work, we use spatially resolved X-ray absorption spectroscopy combined with X-ray fluorescence (XRF) microscopy, X-ray photoelectron spectroscopy, and scanning electron microscopy to examine the structural transformation of SPAN and the critical role of a robust cathode-electrolyte interface (CEI) on the electrode. LiSx species forms during the cycling of SPAN. However, in carbonate-based electrolytes and ether-based electrolytes with LiNO3 additives, these species are well protected by the CEI and do not dissolve into the electrolytes. In contrast, in an ether-based electrolyte without the LiNO3 additive, LiSx species dissolve into the electrolyte, resulting in the shuttle effect and capacity loss. Examination of the Li anode by XRF and SEM reveals dense spherical Li morphology in ether-based electrolytes, but sulfur is present in the absence of the LiNO3 additive. In contrast, porous dendritic Li is found in the carbonate electrolyte. These analyses established that an ether-based electrolyte with LiNO3 is a superior choice that enables stable cycling of both electrodes. Based on these insights, we successfully demonstrate the stable cycling of high areal loading SPAN cathode (>6.5 mA h cm-2) with lean electrolyte amounts, showing promising Li∥SPAN cell performance under practical conditions.

13.
ACS Appl Mater Interfaces ; 13(21): 24995-25001, 2021 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-34010556

RESUMEN

A novel electrolyte system with an excellent low-temperature performance for lithium-ion batteries (LIBs) has been developed and studied. It was discovered for the first time, in this work, that when isoxazole (IZ) was used as the main solvent, the ionic conductivity of the electrolyte for LIBs is more than doubled in a temperature range between -20 and 20 °C compared to the baseline electrolyte using ethylene carbonate-ethyl methyl carbonate as solvents. To solve the problem of solvent co-intercalation into the graphite anode and/or electrolyte decomposition, the lithium difluoro(oxalato)borate (LiDFOB) salt and fluoroethylene carbonate (FEC) additive were used to form a stable solid electrolyte interphase on the surface of the graphite anode. Benefitting from the high ionic conductivity at low temperature, cells using a new electrolyte with 1 M LiDFOB in FEC/IZ (1:10, vol %) solvents demonstrated a very high reversible capacity of 187.5 mAh g-1 at -20 °C, while the baseline electrolyte only delivered a reversible capacity of 23.1 mAh g-1.

14.
Nat Commun ; 12(1): 2350, 2021 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-33879789

RESUMEN

High-nickel content cathode materials offer high energy density. However, the structural and surface instability may cause poor capacity retention and thermal stability of them. To circumvent this problem, nickel concentration-gradient materials have been developed to enhance high-nickel content cathode materials' thermal and cycling stability. Even though promising, the fundamental mechanism of the nickel concentration gradient's stabilization effect remains elusive because it is inseparable from nickel's valence gradient effect. To isolate nickel's valence gradient effect and understand its fundamental stabilization mechanism, we design and synthesize a LiNi0.8Mn0.1Co0.1O2 material that is compositionally uniform and has a hierarchical valence gradient. The nickel valence gradient material shows superior cycling and thermal stability than the conventional one. The result suggests creating an oxidation state gradient that hides the more capacitive but less stable Ni3+ away from the secondary particle surfaces is a viable principle towards the optimization of high-nickel content cathode materials.

15.
Adv Mater ; 33(13): e2008194, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33645858

RESUMEN

Oxygen-redox of layer-structured metal-oxide cathodes has drawn great attention as an effective approach to break through the bottleneck of their capacity limit. However, reversible oxygen-redox can only be obtained in the high-voltage region (usually over 3.5 V) in current metal-oxide cathodes. Here, we realize reversible oxygen-redox in a wide voltage range of 1.5-4.5 V in a P2-layered Na0.7 Mg0.2 [Fe0.2 Mn0.6 □0.2 ]O2 cathode material, where intrinsic vacancies are located in transition-metal (TM) sites and Mg-ions are located in Na sites. Mg-ions in the Na layer serve as "pillars" to stabilize the layered structure during electrochemical cycling, especially in the high-voltage region. Intrinsic vacancies in the TM layer create the local configurations of "□-O-□", "Na-O-□" and "Mg-O-□" to trigger oxygen-redox in the whole voltage range of charge-discharge. Time-resolved techniques demonstrate that the P2 phase is well maintained in a wide potential window range of 1.5-4.5 V even at 10 C. It is revealed that charge compensation from Mn- and O-ions contributes to the whole voltage range of 1.5-4.5 V, while the redox of Fe-ions only contributes to the high-voltage region of 3.0-4.5 V. The orphaned electrons in the nonbonding 2p orbitals of O that point toward TM-vacancy sites are responsible for reversible oxygen-redox, and Mg-ions in Na sites suppress oxygen release effectively.

16.
Chem Commun (Camb) ; 57(23): 2867-2870, 2021 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-33629086

RESUMEN

P3-Na0.65Mn0.5Al0.5O2 (NMAO) has been synthesized and studied as a cathode for sodium batteries, and shows anionic redox reaction (ARR) and exhibits a first charging capacity of ∼110 mA h g-1. The electrochemical mechanism of NMAO was comprehensively investigated by X-ray absorption spectroscopy (XAS), X-ray photoelectron spectroscopy (XPS), Raman spectroscopy, and density functional theory (DFT) calculations. The reversible oxygen redox behaviour is triggered by Al3+ through oxygen quasi non-bonding states generated by the relatively ionic interaction of Al and O. Furthermore, the presence of Al3+ can suppress oxygen loss in ARR. This work provides new insights into the design and mechanism of anionic redox active cathode materials.

17.
Nat Nanotechnol ; 16(5): 549-554, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33510453

RESUMEN

A comprehensive understanding of the solid-electrolyte interphase (SEI) composition is crucial to developing high-energy batteries based on lithium metal anodes. A particularly contentious issue concerns the presence of LiH in the SEI. Here we report on the use of synchrotron-based X-ray diffraction and pair distribution function analysis to identify and differentiate two elusive components, LiH and LiF, in the SEI of lithium metal anodes. LiH is identified as a component of the SEI in high abundance, and the possibility of its misidentification as LiF in the literature is discussed. LiF in the SEI is found to have different structural features from LiF in the bulk phase, including a larger lattice parameter and a smaller grain size (<3 nm). These characteristics favour Li+ transport and explain why an ionic insulator, like LiF, has been found to be a favoured component for the SEI. Finally, pair distribution function analysis reveals key amorphous components in the SEI.

18.
ACS Appl Mater Interfaces ; 13(2): 2622-2629, 2021 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-33410655

RESUMEN

LiNi1-x-yMnxCoyO2 (NMC) is an important class of high-energy-density cathode materials. The possibility of changing both x and y in the chemical formula provides numerous materials with diverse electrochemical and structural properties. It is highly desirable to have guidance on correlating NMC structural and electrochemical properties with their chemical composition for material designing and screening. Here, using synchrotron-based X-ray diffraction, X-ray absorption spectroscopy, electrochemical characterization, and literature survey, the content difference between Mn and Co (denoted as x-y in NMC) is identified as an effective indicator to estimate Li/transition metal (Li/TM) cation mixing ratio and first-cycle Coulombic efficiency (CE). In addition, a linear relationship between oxygen position "z" and the size difference between Li+ and TM cation (normalized by the c-axis length) is found, and such linearity can be used to accurately predict the oxygen position in NMC materials by considering the average TM cation size and c-axis length. It is also concluded that the shortest O-O distance in the bulk of NMC materials could not be shorter than 2.5 Ševen at a highly charged state. Therefore, oxygen release is not likely to take place from the bulk if the structure maintains the R3 ̅m symmetry.

19.
Adv Mater ; 32(49): e2004898, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33150628

RESUMEN

High-energy-density batteries with a LiCoO2 (LCO) cathode are of significant importance to the energy-storage market, especially for portable electronics. However, their development is greatly limited by the inferior performance under high voltages and challenging temperatures. Here, highly stable lithium (Li) metal batteries with LCO cathode, through the design of in situ formed, stable electrode/electrolyte interphases on both the Li anode and the LCO cathode, with an advanced electrolyte, are reported. The LCO cathode can deliver a high specific capacity of ≈190 mAh g-1 and show greatly improved cell performances under a high charge voltage of 4.5 V (even up to 4.55 V) and a wide temperature range from -30 to 55 °C. This work points out a promising approach for developing Li||LCO batteries for practical applications. This approach can also be used to improve the high-voltage performance of other batteries in a broad temperature range.

20.
Nat Commun ; 10(1): 4458, 2019 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-31575867

RESUMEN

The use of anion redox reactions is gaining interest for increasing rechargeable capacities in alkaline ion batteries. Although anion redox coupling of S2- and (S2)2- through dimerization of S-S in sulfides have been studied and reported, an anion redox process through electron hole formation has not been investigated to the best of our knowledge. Here, we report an O3-NaCr2/3Ti1/3S2 cathode that delivers a high reversible capacity of ~186 mAh g-1 (0.95 Na) based on the cation and anion redox process. Various charge compensation mechanisms of the sulfur anionic redox process in layered NaCr2/3Ti1/3S2, which occur through the formation of disulfide-like species, the precipitation of elemental sulfur, S-S dimerization, and especially through the formation of electron holes, are investigated. Direct structural evidence for formation of electron holes and (S2)n- species with shortened S-S distances is obtained. These results provide valuable information for the development of materials based on the anionic redox reaction.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...