Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Adv ; 8(45): eabo0869, 2022 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-36367937

RESUMEN

A robust power device for wearable technologies and soft electronics must feature good encapsulation, high deformability, and reliable electrical outputs. Despite substantial progress in materials and architectures for two-dimensional (2D) planar power configurations, fiber-based systems remain limited to relatively simple configurations and low performance due to challenges in processing methods. Here, we extend complex 2D triboelectric nanogenerator configurations to 3D fiber formats based on scalable thermal processing of water-resistant thermoplastic elastomers and composites. We perform mechanical analysis using finite element modeling to understand the fiber's deformation and the level of control and engineering on its mechanical behavior and thus to guide its dimensional designs for enhanced electrical performance. With microtexture patterned functional surfaces, the resulting fibers can reliably produce state-of-the-art electrical outputs from various mechanical deformations, even under harsh conditions. These mechanical and electrical attributes allow their integration with large and stretchable surfaces for electricity generation of hundreds of microamperes.

2.
Small ; 18(4): e2101392, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34761869

RESUMEN

Multimaterial thermally drawn fibers are becoming important building blocks in several foreseen applications in surgical probes, protective gears, or medical textiles. Here, the influence of the thermal drawing parameters on the degree of polymer chain orientation, the related thermal shrinkage behavior, and the mechanical properties of the final fibers is investigated via thermo-mechanical testing and small- and wide-angle X-ray scattering (SAXS and WAXS) analyses. This study on polyetherimide fibers reveals that the drawing stress, which depends on the drawing speed and temperature, controls the thermal shrinkage behavior and mechanical properties. Furthermore, SAXS and WAXS analyses show that the degree of chain orientation increases with drawing stresses below 8 MPa and then saturates, which correlates with the amount of observed shrinkage. The use of this process-dependent polymer chain alignment to tune the mechanical and shrinkage properties of the fibers is highlighted and controlled bending multimaterial fibers made of two polymethyl methacrylates having different molecular weights are developed. Finally, a heat treatment procedure is proposed to relax the chain alignment and increase the dimensional stability of devices such as temperature sensors. This deeper understanding can serve as a guide for the processing of complex fibers requiring specific mechanical properties or enhanced thermal stability.


Asunto(s)
Polimetil Metacrilato , Polimetil Metacrilato/química , Dispersión del Ángulo Pequeño , Temperatura , Difracción de Rayos X
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...