Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Drug Target ; 32(4): 444-455, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38445558

RESUMEN

In this study, a novel selenium@zeolitic imidazolate framework core/shell nanocomposite stabilised with alginate was used to improve the anti-tumour activity of curcumin. The developed alginate-stabilised curcumin-loaded selenium@zeolitic imidazolate framework (Alg@Cur@Se@ZIF-8) had a mean diameter of 159.6 nm and polydispersity index < 0.25. The release of curcumin from the nanocarrier at pH 5.4 was 2.69 folds as high as at pH 7.4. The bare nanoparticles showed haemolytic activity of about 12.16% at a concentration of 500 µg/mL while covering their surface with alginate reduced this value to 5.2%. By investigating cell viability, it was found that Alg@Cur@Se@ZIF-8 caused more cell death than pure curcumin. Additionally, in vivo studies showed that Alg@Cur@Se@ZIF-8 dramatically reduced tumour growth compared to free curcumin in 4T1 tumour-bearing mice. More importantly, the histological study confirmed that the developed drug delivery system successfully inhibited lung and liver metastasis while causing negligible toxicity in vital organs. Overall, due to the excellent inhibitory activity on cancerous cell lines and tumour-bearing animals, Alg@Cur@Se@ZIF-8 can be considered promising for breast cancer therapy.


Asunto(s)
Curcumina , Nanocompuestos , Nanopartículas , Neoplasias , Selenio , Ratones , Animales , Portadores de Fármacos , Alginatos , Neoplasias/tratamiento farmacológico , Concentración de Iones de Hidrógeno
3.
RSC Adv ; 13(34): 23449-23460, 2023 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-37546220

RESUMEN

BACKGROUND: it is now known that curcumin (Cur) has a broad range of biological properties; however, photosensitivity, as well as low bioavailability and short half-life, have limited its clinical application. To overcome these problems the synthesis of poly(ε-caprolactone)-Tween 80 (PCL-T) copolymers was performed. METHODS: the copolymers of PCL-T were created using the solvent evaporation/extraction technique. Then Cur was loaded in PCL-T micelles (PCL-T-M) by a self-assembly method. The characterization of copolymer and micelles was assessed by gel permeation chromatography (GPC), Fourier transform infrared spectroscopy (FT-IR), proton nuclear magnetic resonance spectroscopy (1HNMR), differential scanning calorimetry (DSC), transmission electron microscopy (TEM), and dynamic light scattering (DLS) methods. The MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] assay was used to indicate the cytotoxicity of the free Cur, PCL-T-M, and Cur-loaded PCL-T-M. RESULTS: TEM analysis showed monodispersed and spherical shapes with a size of about 90 nm. Cur was released from PCL-T-M at pH 7.4 (45%) and 5.5 (90%) during 6 days. After 24 and 48 h, the IC50 of the free Cur, PCL-T-M, and Cur-loaded PCL-T-M on MCF-7 cells were 80.86 and 54.45 µg mL-1, 278.30 and 236.19 µg mL-1, 45.47 and 19.05 µg mL-1, respectively. CONCLUSION: this study showed that, in the same concentration, the effectiveness of the Cur-loaded PCL-T-M is more than the free Cur, and the nano-system has been able to overcome delivery obstacles of Cur drug. Thus, PCL-T-M can be a candidate as a drug carrier for the delivery of Cur and future therapeutic investigations on breast cancer.

4.
Mol Pharm ; 20(3): 1531-1548, 2023 03 06.
Artículo en Inglés | MEDLINE | ID: mdl-36763486

RESUMEN

The blood-brain barrier (BBB) acts as a physical/biochemical barrier that protects brain parenchyma from potential hazards exerted by different xenobiotics found in the systemic circulation. This barrier is created by "a lipophilic gate" as well as a series of highly organized influx/efflux mechanisms. The BBB bottleneck adversely affects the efficacy of chemotherapeutic agents in treating different CNS malignancies such as glioblastoma, an aggressive type of cancer affecting the brain. In the present study, mesoporous silica nanoparticles (MSNs) were conjugated with the transactivator of transcription (TAT) peptide, a cell-penetrating peptide, to produce MSN-NH-TAT with the aim of improving methotrexate (MTX) penetration into the brain. The TAT-modified nanosystem was characterized by Fourier transform infrared spectrometry (FTIR), field emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), atomic force microscopy (AFM), dynamic light scattering (DLS), and N2 adsorption-desorption analysis. In vitro hemolysis and cell viability studies confirmed the biocompatibility of the MSN-based nanocarriers. In addition, in vivo studies showed that the MTX-loaded MSN-NH-TAT improved brain-to-plasma concentration ratio, brain uptake clearance, and the drug's blood terminal half-life, compared with the use of free MTX. Taken together, the results of the present study indicate that MSN functionalization with TAT is crucial for delivery of MTX into the brain. The present nanosystem represents a promising alternative drug carrier to deliver MTX into the brain via overcoming the BBB.


Asunto(s)
Péptidos de Penetración Celular , Glioblastoma , Nanopartículas , Humanos , Metotrexato , Dióxido de Silicio/química , Portadores de Fármacos/química , Nanopartículas/química , Encéfalo , Sistemas de Liberación de Medicamentos/métodos , Porosidad
5.
Front Plant Sci ; 12: 672023, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34025708

RESUMEN

Reduced growth habit is a desirable trait for ornamental potted plants and can successfully be obtained through Rhizobium rhizogenes transformation in a stable and heritable manner. Additionally, it can also be obtained by transformation with Agrobacterium tumefaciens harboring specific genes from R. rhizogenes. The bacterial T-DNA harbors four root oncogenic loci (rol) genes and 14 less known open reading frames (ORFs). The four rol genes, i.e., rolA, rolB, rolC, and rolD, are conceived as the common denominator for the compact phenotype and the other less characterized ORFs seem auxiliary but present a potential breeding target for less aberrant and/or more tailored phenotypes. In this study, Kalanchoë blossfeldiana 'Molly' was transformed with individual rol genes and selected ORFs in 35S overexpressing cassettes to comprehensively characterize growth traits, gene copy and expression, and ethylene tolerance of the flowers. An association of reduced growth habit, e.g. height and diameter, was observed for rolB2 and ORF14-2 when a transgene single copy and high gene expression were detected. Chlorophyll content was reduced in overexpressing lines compared to wild type (WT), except for one ΔORF13a (a truncated ORF13a, where SPXX DNA-binding motif is absent). The flower number severely decreased in the overexpressing lines compared to WT. The anthesis timing showed that WT opened the first flower at 68.9 ± 0.9 days and the overexpressing lines showed similar or up to 24 days delay in flowering. In general, a single or low relative gene copy insertion was correlated to higher gene expression, ca. 3 to 5-fold, in rolB and ΔORF13a lines, while in ORF14 such relation was not directly linked. The increased gene expression observed in rolB2 and ΔORF13a-2 contributed to reducing plant growth and a more compact habit. Tolerance of detached flowers to 0.5 µl L-1 ethylene was markedly higher for ORF14 with 66% less flower closure at day 3 compared to WT. The subcellular localization of rolC and ΔORF13a was investigated by transient expression in Nicotiana benthamiana and confocal images showed that rolC and ΔORF13a are soluble and localize in the cytoplasm being able to enter the nucleus.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...