Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Water Res ; 188: 116509, 2021 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-33069950

RESUMEN

Effective pollution control and remediation strategies are the key to providing a major progress in conservation of coastal and marine biodiversity. For the development of such strategies, quantitative assessment of potentially toxic metals (PTMs) and the accurate identification of the pollutant sources are essential. In this study, we seek to find out spatial PTMs distribution in the coastal sediments of the Persian Gulf (Iran), to assess the potential eco-environmental risks and to identify the metal pollution sources. Total and fraction analysis indicated considerable metal (Zn, Cu, Mn, Fe, Al, Hg, Pb, Cd, As, Cr, Co, Ni and V) pollution levels, albeit in most cases PTMs were predominantly associated with the oxidizable and residual fractions. The obtained PTMs concentrations were in the range of 22.8 - 156.3, 16.6 - 161.9; 2.7 - 88; 10.4 - 107.3; 1.1 - 35.8; 0.8 - 27.9; 0.1 - 1.3; 1.1 - 21.3; 0.04 - 1.9 mg.kg-1 for V, Ni, Cu, Zn, Cr, Co, Hg, Pb, and Cd, respectively. The combined PTM-PCA-PMF modeling approach identified four main metal sources (anthropogenic, vehicle-related, agricultural and lithogenic) in the study area. Several recognizable 'hot-spots' with extremely high metal concentrations were observed in the spatial metal pollution patterns. Some of those locations were predominantly affected by the nearby industrial activities, while others have demonstrated contributions from several sources - not only anthropogenic, but also agricultural and vehicle-related. The same spots of elevated pollution were found to demonstrate higher potential eco-environmental risk. Various indexes indicated more or less similar trends: the eco-environmental risk was gradually increasing towards the northwestern part of the study area with several peaks in the central and eastern parts directly affected by the nearby industrial activities.


Asunto(s)
Metales Pesados , Contaminantes Químicos del Agua , Ecosistema , Monitoreo del Ambiente , Sedimentos Geológicos , Océano Índico , Irán , Metales Pesados/análisis , Medición de Riesgo , Contaminantes Químicos del Agua/análisis , Pesos y Medidas
2.
Ecotoxicol Environ Saf ; 163: 307-322, 2018 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-30056345

RESUMEN

Environmental pollution, particularly oil pollution, has been a long-standing problem in marine areas. With the aim to assess the pollution status in the Persian Gulf, Iran, herein surface sediments were collected from Kharg and Lark coral reefs, in summer (dry season) and winter (wet season), to evaluate the spatio-temporal variations of n-alkanes and PAHs. The mean total organic carbon (TOC) contents of sediments showed a significantly dramatic variation (p < 0.05) in both seasons at both Islands, with high values recorded at sites located near pollutant inputs. The total mean percent of clay grain-sized sediments at Kharg were 26.57% and 28.86% in dry and wet seasons, respectively, while in Lark were 26.73% in summer and 24.57% in winter. Additionally, at Kharg the mean ∑25n-alkanes and ∑30PAHs ranged from 81.35 to 573 µg g-1 dw and 60.25-491 ng g-1 dw in dry season, and 171-754 µg g-1 dw and 41.61-693 ng g-1 dw in winter, respectively. At Lark, the average ∑25n-alkanes and ∑30PAHs varied from 31.18 to 272 µg g-1 dw and 41.25-196 ng g-1 dw in summer, whilst oscillated from 57.99 to 332 µg g-1 dw and 16.56-487 ng g-1 dw in wet season, respectively. The lowest mean level of the examined pollutants were spanned in offshore sites, while the highest average concentrations indicated that contaminated sediments were at onshore stations at both Islands in both seasons. Significant seasonal variations (p < 0.05) were observed at most sampling sites for all pollutants. Molecular Diagnostic Ratio (MDR) and Principal Component Analysis (PCA) indicated that n-alkanes and PAHs had mostly a petrogenic source. The compositional profile of PAHs showed that 2 and 3-ring PAHs were abundant at both sampling sites. Significant positive correlation (r > 0.76) was observed between ∑25n-alkanes and ∑30PAHs at Kharg and Lark sediments with TOC content, especially for the sites with high total pollutant concentrations. Based on the potential impact and ecological risk of n-alkanes and PAHs in surface sediments, it is, therefore, necessary in future studies to focus on their effects on corals and other marine organisms within this ecosystem.


Asunto(s)
Alcanos/análisis , Sedimentos Geológicos/análisis , Hidrocarburos Policíclicos Aromáticos/análisis , Contaminantes Químicos del Agua/análisis , Arrecifes de Coral , Monitoreo del Ambiente , Océano Índico , Irán , Estaciones del Año
3.
Sci Total Environ ; 627: 141-157, 2018 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-29426136

RESUMEN

The coral reefs of the Persian Gulf are the most diverse systems of life in the marine environment of the Middle East. Unfortunately, they are highly threatened by local and global stressors, particularly oil pollutants. This is the first quantitative and qualitative study aimed at assessing the concentration and sources of n-alkanes and POPs (PAHs, PCBs and PCNs) in coral tissues, symbiotic algae (zooxanthellae), reef sediments and seawaters in coral reefs of Lark and Kharg in the Persian Gulf, Iran. This work was conducted on eight species of six genera and three families of hard corals and one family of soft coral. A significant variation in the concentration of ∑30n-alkanes and POPs (∑40PAHs, ∑22PCBs and 20PCNs) was found in the decreasing order: zooxanthellae > coral tissue > skeleton > reef sediment > seawater. The bioaccumulation of these compounds was 2-times higher in ahermatypic than in hermatypic corals, among which significant variations were observed in both sites. In Kharg, Porites lutea had the highest mean concentration of ∑30n-alkanes and ∑40PAHs in soft tissue, whereas the lowest values were in Platygyra daedalea. A contrasting trend was documented for ∑22PCBs and 20PCNs, with the highest level reported in soft tissue of P. daedalea and the lowest in P. lutea at Kharg. Compositional pattern of AHs and PAHs demonstrated the predominance of LMW-PAHs and n-alkanes. In skeleton and reef sediments, tetra, penta and tri-CBs were the most abundant PCBs congeners followed by di-CB > hexa-CB > hepta-CB > octa-CB,whiletri-CB > di-CB > tetra-CB > penta-CB > hexa-CB > hepta-CB > octa-CB was observed for soft tissue, zooxanthellae and seawater. The results of RAD test indicated significantly negative correlation between total concentration of these compounds with zooxanthellae density, the chlorophyll-a and C2 in corals at both reefs. This is the first report on levels, health assessment and source apportionments of POPs in zooxanthellae and a first step in the implementation of specific coral reef management measures.


Asunto(s)
Antozoos/efectos de los fármacos , Arrecifes de Coral , Hidrocarburos/metabolismo , Hidrocarburos/toxicidad , Contaminantes Químicos del Agua/metabolismo , Contaminantes Químicos del Agua/toxicidad , Animales , Antozoos/fisiología , Océano Índico , Irán , Medio Oriente , Bifenilos Policlorados/metabolismo , Bifenilos Policlorados/toxicidad , Especificidad de la Especie
4.
Chemosphere ; 185: 1090-1111, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28764111

RESUMEN

Concentrations of 13 heavy metals (Al, Fe, Mn, Zn, Cu, Cr, Co, Ni, V, As, Cd, Hg, Pb) in 360 reef surface sediments (0-5 cm) and coastal seawater samples from ten coral Islands in the Persian Gulf were analyzed to determine their spatial distribution and potential ecological risks. Different sediment quality indices were applied to assess the surface sediment quality. The mean concentrations of metals in studied sediments followed the order: Al > Fe > Ni > V > Mn > Zn > Cu > Cr > Co > As > Cd > Pb > As. Average Cd and Hg exceeded coastal background levels at most sampling sites. With the exception of As, concentrations of heavy metals decreased progressively from the west to the east of the Persian Gulf. Based on the Enrichment Factor (EF) and Potential Ecological Risk Index (RI), concentrations of V, Ni, Hg and Cd indicated moderate contamination and is of some concern. The mean values of heavy metals Toxic Units (TUs) were calculated in the following order: Hg (0.75)> Cr (0.41)> Cd (0.27)> As (0.23)> Cu (0.12)> Zn (0.05)> Pb (0.009). Furthermore, the mean contributing ratios of six heavy metals to Toxic Risk Index (TRI) values were 79% for Hg, 11.48% for Cd, 6.16% for Cr, 3.27% for Cu, 0.07% for Zn and 0.01% for Pb. Calculated values of potential ecological risk factor, revealed that the risk of the heavy metals followed the order Cd > Pb > Ni > Cr > V > Cu > Zn. The results reflected that the level of heavy metals, especially Hg and Cd, are on rise due to emerging oil exploration, industrial development, and oil refineries along the entire Gulf. Fe, Mn, Cu, Zn, V and Ni concentrations in seawater were significantly higher (p < 0.05) than the other detected dissolved heavy metals in the sampling sites. A health risk assessment using the hazard quotient index (HQ) recommended by the USEPA suggests that there is no adverse health effect through dermal exposure, and there is no carcinogenic and non-carcinogenic harm to human health.


Asunto(s)
Arrecifes de Coral , Monitoreo del Ambiente , Metales Pesados/análisis , Contaminantes Químicos del Agua/análisis , Ecología , Sedimentos Geológicos/química , Humanos , Océano Índico , Irán , Mercurio , Medición de Riesgo , Agua de Mar/química
5.
Ecotoxicol Environ Saf ; 145: 640-652, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-28818794

RESUMEN

The concentration and spatial distribution along with ecotoxicological risk of 30 polycyclic aromatic hydrocarbons were investigated in the reef surface sediments (RSSs) and coastal seawater (CSW) of ten coral Islands from the Persian Gulf, Iran, in January 2015. For all sampling sites, assessment of ecological risk was undertaken using several approaches. Mean concentration of ∑30PAHs varied between 70 and 884ngL-l with an overall mean value of 464ngL-l in the CSW, while the RSS ranged from 274 to 1098ngg-1dw with a total average of 619ngg-1dw. The results showed a gradient in PAH concentration and toxicity estimates from the northern Hormoz site increasing to the eastern Kharg site. Most of the toxicity estimates were in the moderate range or less than risk values for damage to the marine environment. The calculated Dermal Hazard Quotient (HQs), the sum of HQs (HI) and other cancer risk values of most compounds were less than safety values at most sites. It means that the possibility of negative effects of PAHs via dermal absorption from sediments for children and adults is low. Some sampling sites studied have already been impacted with hazardous pollutants for an extended period of time and evidence from this investigation demonstrates that mixtures of PAHs may be carcinogenic to humans, especially in the western part of the Gulf.


Asunto(s)
Antozoos , Monitoreo del Ambiente/métodos , Sedimentos Geológicos/química , Hidrocarburos Policíclicos Aromáticos/análisis , Agua de Mar/química , Contaminantes Químicos del Agua/análisis , Adulto , Animales , Ecotoxicología , Humanos , Océano Índico , Irán , Islas , Medición de Riesgo
6.
Environ Pollut ; 224: 195-223, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-28216134

RESUMEN

This study is the first quantitative report on petroleum biomarkers from the coral reefs systems of the Persian Gulf. 120 reef surface sediment samples from ten fragile coral reef ecosystems were collected and analyzed for grain size, biogenic elements, elemental ratios, and petroleum biomarkers (n-alkanes, PAHs1 and Hopanes) to assess the sources and early diagenesis of sedimentary organic matter. The mean grain size of the reef sediments ranged from 13.56 to 37.11% (Clay), 26.92 to 51.73% (Sand) and 35.97 to 43.85% (Silt). TOC2 (3.35-9.72 mg.g-1) and TON3 (0.4-1.10 mg.g-1) were identified as influencing factors on the accumulation of petroleum hydrocarbons, whilst BC4 (1.08-3.28 mg.g-1) and TIN5 (0.13-0.86) did not exhibit any determining effect. Although BC and TIN demonstrated heterogeneous spatial distribution, TOC and TON indicated homogenous distribution with continually upward trend in concentration from the east to west ward of the Gulf. The mean calculated TOC/TN ratios vacillated according to the stations (p < 0.05) from 2.96 at Shidvar Island to 8.64 at Hengam Island. The high TOC/TN ratios were observed in the Hengam (8.64), Kharg (8.04) and Siri (6.29), respectively, suggesting a predominant marine origin. The mean concentrations of ∑C11-35n-alkanes, ∑30 PAHs and ∑9Hopanes were found in the ranges of 385-937 µg.g-1dw, (overall mean:590 µg.g-1dw), 326-793 ng.g-1dw (499 ng.g-1dw), 88 to 568 ng.g-1 d (258 ng.g-1dw), respectively. Higher concentrations of detected petroleum biomarkers in reef sediments were chiefly distributed near main industrial areas, Kharg, Lavan and Siri, whilst the lower concentrations were in Hormoz and Qeshm. In addition, one-way ANOVA6 analysis demonstrated considerably significant differences (p < 0.05) among concentration of detected total petroleum hydrocarbons between most sampling locations. Some sampling sites especially Kharg, Lavan, Siri and Lark indicated higher concentration of n-alkanes due to the higher maintenance of organic matter by high clay content in the sediments. Furthermore, most sediment samples, except for Hormoz, Qeshm and Hengam showed an even carbon preference for n-alkanes which could be correlated to bacterial input. NPMDS7 analysis also demonstrated that among the congeners of petroleum biomarkers, n-C12,n-C14, n-C16,n-C18 and n-C20 for n-alkanes, Phe8 and Naph9 along with their Alkyl homologues for PAHs (2-3 rings accounted for 60%) and C30αß and C29αß for Hopanes were discriminated from their other congeners in the whole study area. Our results based on the PCA10 analysis and diagnostic indices of AHs11 and PAHs along with ring classification of PAHs, in addition, the ubiquitous presence of UCM,12 and Hopanes revealed that the main sources of the pollution were petroleum and petroleum combustion mainly from offshore oil exploration and extraction, discharge of pollutants from shipping activities.


Asunto(s)
Arrecifes de Coral , Monitoreo del Ambiente , Sedimentos Geológicos/química , Hidrocarburos Policíclicos Aromáticos/análisis , Triterpenos/análisis , Alcanos/análisis , Hidrocarburos/análisis , Océano Índico , Irán , Petróleo/análisis , Análisis Espacio-Temporal , Triterpenos/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA