Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Photosynth Res ; 151(1): 125-142, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34669148

RESUMEN

The complete genome sequence of the thermophilic purple sulfur bacterium Thermochromatium tepidum strain MCT (DSM 3771T) is described and contrasted with that of its mesophilic relative Allochromatium vinosum strain D (DSM 180T) and other Chromatiaceae. The Tch. tepidum genome is a single circular chromosome of 2,958,290 base pairs with no plasmids and is substantially smaller than the genome of Alc. vinosum. The Tch. tepidum genome encodes two forms of RuBisCO and contains nifHDK and several other genes encoding a molybdenum nitrogenase but lacks a gene encoding a protein that assembles the Fe-S cluster required to form a functional nitrogenase molybdenum-iron cofactor, leaving the phototroph phenotypically Nif-. Tch. tepidum contains genes necessary for oxidizing sulfide to sulfate as photosynthetic electron donor but is genetically unequipped to either oxidize thiosulfate as an electron donor or carry out assimilative sulfate reduction, both of which are physiological hallmarks of Alc. vinosum. Also unlike Alc. vinosum, Tch. tepidum is obligately phototrophic and unable to grow chemotrophically in darkness by respiration. Several genes present in the Alc. vinosum genome that are absent from the genome of Tch. tepidum likely contribute to the major physiological differences observed between these related purple sulfur bacteria that inhabit distinct ecological niches.


Asunto(s)
Chromatiaceae , Chromatiaceae/genética , Análisis de Secuencia de ADN , Azufre
2.
Extremophiles ; 25(2): 159-172, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33590336

RESUMEN

Little is known about microbial ecosystems of interior Antarctica, if indeed such ecosystems exist. Although considerable research has assessed microorganisms indigenous to coastal regions of Antarctica, particularly their lakes, ponds, and soils, to our knowledge only one characterized bacterium, a strain of Pseudomonas, has been isolated from South Pole ice or snow. Metagenomic community analyses described in this work and elsewhere reveal that a diversity of bacteria exists in inland polar snows, yet attempts to culture and characterize these microbes from this extreme environment have been few to date. In this molecular and culture-dependent investigation of the microbiology of inland Antarctica, we enriched and isolated two new strains of bacteria and one strain of yeast (Fungi) from South Pole snow samples. The bacteria were of the genera Methylobacterium and Sphingomonas, and the yeast grouped with species of Naganishia (class Tremellocytes). In addition to phylogenetic analyses, characterization of these isolates included determinations of cell morphology, growth as a function of temperature, salinity tolerance, and carbon and energy source versatility. All organisms were found to be cold-adapted, and the yeast strain additionally showed considerable halotolerance. These descriptions expand our understanding of the diversity and metabolic activities of snowbound microorganisms of interior Antarctica.


Asunto(s)
Bacterias , Ecosistema , Regiones Antárticas , Bacterias/genética , Hongos , Filogenia
3.
Microorganisms ; 8(3)2020 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-32106460

RESUMEN

Despite significant interest and past work to elucidate the phylogeny and photochemistry of species of the Heliobacteriaceae, genomic analyses of heliobacteria to date have been limited to just one published genome, that of the thermophilic species Heliobacterium (Hbt.) modesticaldum str. Ice1T. Here we present an analysis of the complete genome of a second heliobacterium, Heliorestis (Hrs.) convoluta str. HHT, an alkaliphilic, mesophilic, and morphologically distinct heliobacterium isolated from an Egyptian soda lake. The genome of Hrs. convoluta is a single circular chromosome of 3.22 Mb with a GC content of 43.1% and 3263 protein-encoding genes. In addition to culture-based observations and insights gleaned from the Hbt. modesticaldum genome, an analysis of enzyme-encoding genes from key metabolic pathways supports an obligately photoheterotrophic lifestyle for Hrs. convoluta. A complete set of genes encoding enzymes for propionate and butyrate catabolism and the absence of a gene encoding lactate dehydrogenase distinguishes the carbon metabolism of Hrs. convoluta from its close relatives. Comparative analyses of key proteins in Hrs. convoluta, including cytochrome c553 and the Fo alpha subunit of ATP synthase, with those of related species reveal variations in specific amino acid residues that likely contribute to the success of Hrs. convoluta in its highly alkaline environment.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...